A note on Hamiltonicity of uniform random intersection graphs

被引:0
|
作者
Mindaugas Bloznelis
Irmantas Radavičius
机构
[1] Vilnius University,Faculty of Mathematics and Informatics
来源
关键词
random graph; random intersection graph; Hamilton cycle; clustering; 05C45; 05C80;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a collection of n independent random subsets of [m] = {1, 2, . . . , m} that are uniformly distributed in the class of subsets of size d, and call any two subsets adjacent whenever they intersect. This adjacency relation defines a graph called the uniform random intersection graph and denoted by Gn,m,d. We fix d = 2, 3, . . . and study when, as n,m → ∞, the graph Gn,m,d contains a Hamilton cycle (the event denoted \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {G_{n,m,d}} \in \mathcal{H} $\end{document}). We show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathbf{P}}\left( {{G_{n,m,d}} \in \mathcal{H}} \right) = o(1) $\end{document} for d2nm−1− lnm − 2 ln lnm → −∞ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathbf{P}}\left( {{G_{n,m,d}} \in \mathcal{H}} \right) = 1 - o(1) $\end{document} for 2nm−1− lnm − ln lnm → +∞.
引用
收藏
页码:155 / 161
页数:6
相关论文
共 50 条
  • [21] RANDOM INTERSECTION GRAPHS WITH COMMUNITIES
    van der Hofstad, Remco
    Komjathy, Julia
    Vadon, Viktoria
    ADVANCES IN APPLIED PROBABILITY, 2021, 53 (04) : 1061 - 1089
  • [22] EPIDEMICS ON RANDOM INTERSECTION GRAPHS
    Ball, Frank G.
    Sirl, David J.
    Trapman, Pieter
    ANNALS OF APPLIED PROBABILITY, 2014, 24 (03): : 1081 - 1128
  • [23] Random intersection graphs and classification
    Godehardt, Erhard
    Jaworski, Jerzy
    Rybarczyk, Katarzyna
    ADVANCES IN DATA ANALYSIS, 2007, : 67 - +
  • [24] Recognizing random intersection graphs
    Prisner, E
    DISCRETE MATHEMATICS, 2000, 223 (1-3) : 263 - 274
  • [25] Hamiltonicity and restricted block-intersection graphs of t-designs
    Pike, David A.
    Vandell, Robert C.
    Walsh, Matthew
    DISCRETE MATHEMATICS, 2009, 309 (21) : 6312 - 6315
  • [26] ON INTERSECTION GRAPHS WITH RESPECT TO UNIFORM FAMILIES
    ERA, H
    TSUCHIYA, M
    UTILITAS MATHEMATICA, 1990, 37 : 3 - 12
  • [27] Maximum Cliques in Graphs with Small Intersection Number and Random Intersection Graphs
    Nikoletseas, Sotiris
    Raptopoulos, Christoforos
    Spirakis, Paul G.
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2012, 2012, 7464 : 728 - 739
  • [28] Maximum cliques in graphs with small intersection number and random intersection graphs
    Nikoletseas, Sotiris E.
    Raptopoulos, Christoforos L.
    Spirakis, Paul G.
    COMPUTER SCIENCE REVIEW, 2021, 39
  • [29] A threshold result for loose Hamiltonicity in random regular uniform hypergraphs
    Altman, Daniel
    Greenhill, Catherine
    Isaev, Mikhail
    Ramadurai, Reshma
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 142 : 307 - 373