Multidimensional Continued Fractions, Dynamical Renormalization and KAM Theory

被引:0
|
作者
Kostya Khanin
João Lopes Dias
Jens Marklof
机构
[1] University of Toronto,Department of Mathematics
[2] Universidade Técnica de Lisboa,Departamento de Matemática, ISEG
[3] University of Bristol,School of Mathematics
来源
Communications in Mathematical Physics | 2007年 / 270卷
关键词
Homogeneous Space; Continue Fraction; Fundamental Domain; Fourier Mode; Renormalization Scheme;
D O I
暂无
中图分类号
学科分类号
摘要
The disadvantage of ‘traditional’ multidimensional continued fraction algorithms is that it is not known whether they provide simultaneous rational approximations for generic vectors. Following ideas of Dani, Lagarias and Kleinbock-Margulis we describe a simple algorithm based on the dynamics of flows on the homogeneous space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(d, \mathbb{Z}) \backslash SL(d, \mathbb{R})$$\end{document} (the space of lattices of covolume one) that indeed yields best possible approximations to any irrational vector. The algorithm is ideally suited for a number of dynamical applications that involve small divisor problems. As an example, we explicitly construct a renormalization scheme for the linearization of vector fields on tori of arbitrary dimension.
引用
收藏
页码:197 / 231
页数:34
相关论文
共 50 条
  • [41] Quantitative metric theory of continued fractions
    J HANČL
    A HADDLEY
    P LERTCHOOSAKUL
    R NAIR
    Proceedings - Mathematical Sciences, 2016, 126 : 167 - 177
  • [42] A theory of the convergence of continued fractions.
    Mall, J
    MATHEMATISCHE ZEITSCHRIFT, 1939, 45 : 368 - 376
  • [43] A note on the metrical theory of continued fractions
    Harman, G
    Wong, KC
    AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (09): : 834 - 837
  • [44] On Dumas' theorem in the theory of continued fractions
    Suetin, SP
    RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (05) : 1010 - 1012
  • [45] The fractional dimensional theory of continued fractions
    Good, IJ
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1941, 37 : 199 - 228
  • [46] Quantitative metric theory of continued fractions
    Hancl, J.
    Haddley, A.
    Lertchoosakul, P.
    Nair, R.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2016, 126 (02): : 167 - 177
  • [47] Metrical theory for Farey continued fractions
    Brown, G
    Yin, QH
    OSAKA JOURNAL OF MATHEMATICS, 1996, 33 (04) : 951 - 970
  • [48] THE METRICAL THEORY OF COMPLEX CONTINUED FRACTIONS
    NAKADA, H
    ACTA ARITHMETICA, 1990, 56 (04) : 279 - 289
  • [49] The shrinking target problem in the dynamical system of continued fractions
    Li, Bing
    Wang, Bao-Wei
    Wu, Jun
    Xu, Jian
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 108 : 159 - 186
  • [50] Generalized continued fractions and ergodic theory
    Pustyl'nikov L.D.
    Journal of Mathematical Sciences, 1999, 95 (5) : 2552 - 2563