Quantitative metric theory of continued fractions

被引:0
|
作者
J HANČL
A HADDLEY
P LERTCHOOSAKUL
R NAIR
机构
[1] University of Ostrava,Department of Mathematics and Centre for Excellence IT4Innovation, Division of UO, Institute for Research and Applications of Fuzzy Modeling
[2] The University of Liverpool,Mathematical Sciences
[3] Polish Academy of Sciences,Institute of Mathematics
来源
关键词
Continued fractions; ergodic averages; metric theory of numbers; Primary: 11K50; Secondary: 28D99;
D O I
暂无
中图分类号
学科分类号
摘要
Quantitative versions of the central results of the metric theory of continued fractions were given primarily by C. De Vroedt. In this paper we give improvements of the bounds involved . For a real number x, let x=c0+1c1+1c2+1c3+1c4+⋱.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \ = \ c_{0} + \frac{1}{\displaystyle c_{1} + \frac{1}{\displaystyle c_{2} + \frac{1}{\displaystyle c_{3} + \frac{1}{\displaystyle c_{4} +_{\ddots}}}}}. $$\end{document}A sample result we prove is that given 𝜖 > 0, c1(x)⋯cn(x)1n=∏k=1∞1+1k(k+2)logklog2+on−12(logn)32(loglogn)12+𝜖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left (c_{1} (x) {\cdots} c_{n}(x) \right )^{\frac{1}{n}} = { \prod}_{k=1}^{\infty}\left (1+ \frac{1}{k(k+2)} \right )^{\frac{\log k }{ \log 2}} + o \left (n^{-\frac{1}{ 2}}(\log n )^{\frac{3}{ 2}} (\log \log n)^{\frac{1}{2}+\epsilon} \right ) $$\end{document}almost everywhere with respect to the Lebesgue measure.
引用
收藏
页码:167 / 177
页数:10
相关论文
共 50 条
  • [1] Quantitative metric theory of continued fractions
    Hancl, J.
    Haddley, A.
    Lertchoosakul, P.
    Nair, R.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2016, 126 (02): : 167 - 177
  • [2] ON THE QUANTITATIVE METRIC THEORY OF CONTINUED FRACTIONS IN POSITIVE CHARACTERISTIC
    Lertchoosakul, Poj
    Nair, Radhakrishnan
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2018, 61 (01) : 283 - 293
  • [3] Metric theory for continued β-fractions
    Feng, Jing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 542 (01)
  • [4] ON THE METRIC THEORY OF NEAREST INTEGER CONTINUED FRACTIONS
    RIESEL, H
    BIT, 1987, 27 (02): : 248 - 263
  • [5] ON THE METRIC THEORY OF CONTINUED FRACTIONS IN POSITIVE CHARACTERISTIC
    Lertchoosakul, Poj
    Nair, Radhakrishnan
    MATHEMATIKA, 2014, 60 (02) : 307 - 320
  • [6] METRIC THEORY OF CONTINUED FRACTIONS BY NEAREST INTEGERS
    RIEGER, GJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (02): : A270 - A270
  • [7] MARTINGALE DIFFERENCES AND THE METRIC THEORY OF CONTINUED FRACTIONS
    Haynes, Alan K.
    Vaaler, Jeffrey D.
    ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (01) : 213 - 242
  • [8] On the metric theory of p-adic continued fractions
    Hancl, J.
    Jassova, A.
    Lertchoosakul, P.
    Nair, R.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2013, 24 (01): : 42 - 56
  • [9] METRIC THEORY of PARTIAL QUOTIENTS of N-CONTINUED FRACTIONS
    Wang, Jinfeng
    Zhang, Yuan
    Fractals, 2022, 30 (01):
  • [10] METRIC THEORY OF PARTIAL QUOTIENTS OF N-CONTINUED FRACTIONS
    Wang, Jinfeng
    Zhang, Yuan
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (01)