Quantitative metric theory of continued fractions

被引:0
|
作者
J HANČL
A HADDLEY
P LERTCHOOSAKUL
R NAIR
机构
[1] University of Ostrava,Department of Mathematics and Centre for Excellence IT4Innovation, Division of UO, Institute for Research and Applications of Fuzzy Modeling
[2] The University of Liverpool,Mathematical Sciences
[3] Polish Academy of Sciences,Institute of Mathematics
来源
关键词
Continued fractions; ergodic averages; metric theory of numbers; Primary: 11K50; Secondary: 28D99;
D O I
暂无
中图分类号
学科分类号
摘要
Quantitative versions of the central results of the metric theory of continued fractions were given primarily by C. De Vroedt. In this paper we give improvements of the bounds involved . For a real number x, let x=c0+1c1+1c2+1c3+1c4+⋱.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \ = \ c_{0} + \frac{1}{\displaystyle c_{1} + \frac{1}{\displaystyle c_{2} + \frac{1}{\displaystyle c_{3} + \frac{1}{\displaystyle c_{4} +_{\ddots}}}}}. $$\end{document}A sample result we prove is that given 𝜖 > 0, c1(x)⋯cn(x)1n=∏k=1∞1+1k(k+2)logklog2+on−12(logn)32(loglogn)12+𝜖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left (c_{1} (x) {\cdots} c_{n}(x) \right )^{\frac{1}{n}} = { \prod}_{k=1}^{\infty}\left (1+ \frac{1}{k(k+2)} \right )^{\frac{\log k }{ \log 2}} + o \left (n^{-\frac{1}{ 2}}(\log n )^{\frac{3}{ 2}} (\log \log n)^{\frac{1}{2}+\epsilon} \right ) $$\end{document}almost everywhere with respect to the Lebesgue measure.
引用
收藏
页码:167 / 177
页数:10
相关论文
共 50 条