Quantitative metric theory of continued fractions

被引:0
|
作者
J HANČL
A HADDLEY
P LERTCHOOSAKUL
R NAIR
机构
[1] University of Ostrava,Department of Mathematics and Centre for Excellence IT4Innovation, Division of UO, Institute for Research and Applications of Fuzzy Modeling
[2] The University of Liverpool,Mathematical Sciences
[3] Polish Academy of Sciences,Institute of Mathematics
来源
关键词
Continued fractions; ergodic averages; metric theory of numbers; Primary: 11K50; Secondary: 28D99;
D O I
暂无
中图分类号
学科分类号
摘要
Quantitative versions of the central results of the metric theory of continued fractions were given primarily by C. De Vroedt. In this paper we give improvements of the bounds involved . For a real number x, let x=c0+1c1+1c2+1c3+1c4+⋱.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \ = \ c_{0} + \frac{1}{\displaystyle c_{1} + \frac{1}{\displaystyle c_{2} + \frac{1}{\displaystyle c_{3} + \frac{1}{\displaystyle c_{4} +_{\ddots}}}}}. $$\end{document}A sample result we prove is that given 𝜖 > 0, c1(x)⋯cn(x)1n=∏k=1∞1+1k(k+2)logklog2+on−12(logn)32(loglogn)12+𝜖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left (c_{1} (x) {\cdots} c_{n}(x) \right )^{\frac{1}{n}} = { \prod}_{k=1}^{\infty}\left (1+ \frac{1}{k(k+2)} \right )^{\frac{\log k }{ \log 2}} + o \left (n^{-\frac{1}{ 2}}(\log n )^{\frac{3}{ 2}} (\log \log n)^{\frac{1}{2}+\epsilon} \right ) $$\end{document}almost everywhere with respect to the Lebesgue measure.
引用
收藏
页码:167 / 177
页数:10
相关论文
共 50 条
  • [11] Metric theorems for continued β-fractions
    Feng, Jing
    Ma, Chao
    Wang, Shuailing
    MONATSHEFTE FUR MATHEMATIK, 2019, 190 (02): : 281 - 299
  • [12] Some metric properties of α-continued fractions
    Nakada, H
    Natsui, R
    JOURNAL OF NUMBER THEORY, 2002, 97 (02) : 287 - 300
  • [13] METRIC PROPERTIES OF N-CONTINUED FRACTIONS
    Lascu, Dan
    MATHEMATICAL REPORTS, 2017, 19 (02): : 165 - 181
  • [14] Analytic Theory of Continued Fractions
    不详
    LIBRARY JOURNAL, 1948, 73 (16) : 1282 - 1282
  • [16] On the Extremal Theory of Continued Fractions
    Alina Bazarova
    István Berkes
    Lajos Horváth
    Journal of Theoretical Probability, 2016, 29 : 248 - 266
  • [17] On the Extremal Theory of Continued Fractions
    Bazarova, Alina
    Berkes, Istvan
    Horvath, Lajos
    JOURNAL OF THEORETICAL PROBABILITY, 2016, 29 (01) : 248 - 266
  • [18] Haas Molnar Continued Fractions and Metric Diophantine Approximation
    Liangang Ma
    Radhakrishnan Nair
    Proceedings of the Steklov Institute of Mathematics, 2017, 299 : 157 - 177
  • [19] Haas Molnar Continued Fractions and Metric Diophantine Approximation
    Ma, Liangang
    Nair, Radhakrishnan
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 299 (01) : 157 - 177
  • [20] METRICAL THEORY FOR OPTIMAL CONTINUED FRACTIONS
    BOSMA, W
    KRAAIKAMP, C
    JOURNAL OF NUMBER THEORY, 1990, 34 (03) : 251 - 270