On some quadratic APN functions

被引:0
|
作者
Hiroaki Taniguchi
机构
[1] National Institute of Technology,
[2] Kagawa College,undefined
来源
关键词
APN function; Semifield; Projective polynomial; 11T71; 06E30; 12K10; 51A35;
D O I
暂无
中图分类号
学科分类号
摘要
A construction of APN functions using the bent function B(x,y)=xy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B(x,y)=xy$$\end{document} is proposed in Carlet (Des Codes Cryptogr 59:89–109, 2011). At this time, two families of APN functions using this construction are known, that is, the family of Carlet (2011) and the family of Zhou and Pott (Adv Math 234:43–60, 2013). In this note, we propose another family of APN functions with this construction, which are not CCZ equivalent to the former two families on F28\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {F}}}_{2^8}$$\end{document}. We also propose a family of presemifields and determined the middle, left, right nuclei and the center of the associated semifields.
引用
收藏
页码:1973 / 1983
页数:10
相关论文
共 50 条
  • [31] On a class of quadratic polynomials with no zeros and its application to APN functions
    Bracken, Carl
    Tan, Chik How
    Tan, Yin
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 25 : 26 - 36
  • [32] On the Walsh spectrum of a family of quadratic APN functions with five terms
    Qu LongJiang
    Tan Yin
    Li Chao
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (02) : 1 - 7
  • [33] On the Walsh spectrum of a family of quadratic APN functions with five terms
    QU LongJiang
    TAN Yin
    LI Chao
    Science China(Information Sciences), 2014, 57 (02) : 271 - 277
  • [34] Two classes of quadratic APN binomials inequivalent to power functions
    Budaghyan, Lilya
    Carlet, Claude
    Leander, Gregor
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (09) : 4218 - 4229
  • [35] On the Walsh spectrum of a family of quadratic APN functions with five terms
    LongJiang Qu
    Yin Tan
    Chao Li
    Science China Information Sciences, 2014, 57 : 1 - 7
  • [36] Quadratic zero-difference balanced functions, APN functions and strongly regular graphs
    Claude Carlet
    Guang Gong
    Yin Tan
    Designs, Codes and Cryptography, 2016, 78 : 629 - 654
  • [37] Quadratic zero-difference balanced functions, APN functions and strongly regular graphs
    Carlet, Claude
    Gong, Guang
    Tan, Yin
    DESIGNS CODES AND CRYPTOGRAPHY, 2016, 78 (03) : 629 - 654
  • [38] An infinite class of quadratic APN functions which are not equivalent to power mappings
    Budaghyan, Lilya
    Carlet, Claude
    Felke, Patrick
    Leander, Gregor
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 2637 - +
  • [40] Isomorphisms and automorphisms of extensions of bilinear dimensional dual hyperovals and quadratic APN functions
    Dempwolff, Ulrich
    Edel, Yves
    JOURNAL OF GROUP THEORY, 2016, 19 (02) : 249 - 322