On some quadratic APN functions

被引:0
|
作者
Hiroaki Taniguchi
机构
[1] National Institute of Technology,
[2] Kagawa College,undefined
来源
关键词
APN function; Semifield; Projective polynomial; 11T71; 06E30; 12K10; 51A35;
D O I
暂无
中图分类号
学科分类号
摘要
A construction of APN functions using the bent function B(x,y)=xy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B(x,y)=xy$$\end{document} is proposed in Carlet (Des Codes Cryptogr 59:89–109, 2011). At this time, two families of APN functions using this construction are known, that is, the family of Carlet (2011) and the family of Zhou and Pott (Adv Math 234:43–60, 2013). In this note, we propose another family of APN functions with this construction, which are not CCZ equivalent to the former two families on F28\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {F}}}_{2^8}$$\end{document}. We also propose a family of presemifields and determined the middle, left, right nuclei and the center of the associated semifields.
引用
收藏
页码:1973 / 1983
页数:10
相关论文
共 50 条
  • [21] Two New Families of Quadratic APN Functions
    Li, Kangquan
    Zhou, Yue
    Li, Chunlei
    Qu, Longjiang
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (07) : 4761 - 4769
  • [22] A matrix approach for constructing quadratic APN functions
    Yu, Yuyin
    Wang, Mingsheng
    Li, Yongqiang
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 73 (02) : 587 - 600
  • [23] On quadratic APN functions and dimensional dual hyperovals
    Yves Edel
    Designs, Codes and Cryptography, 2010, 57 : 35 - 44
  • [24] On quadratic APN functions and dimensional dual hyperovals
    Edel, Yves
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 57 (01) : 35 - 44
  • [25] Construction of CCZ transform for quadratic APN functions
    Zhang, Xinyang
    Zhou, Meng
    COGNITIVE SYSTEMS RESEARCH, 2019, 57 : 41 - 45
  • [26] A matrix approach for constructing quadratic APN functions
    Yuyin Yu
    Mingsheng Wang
    Yongqiang Li
    Designs, Codes and Cryptography, 2014, 73 : 587 - 600
  • [27] A NOTE ON THE PROPERTIES OF ASSOCIATED BOOLEAN FUNCTIONS OF QUADRATIC APN FUNCTIONS
    Gorodilova, A. A.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2020, (47): : 16 - 21
  • [28] ON THE FOURIER SPECTRA OF THE INFINITE FAMILIES OF QUADRATIC APN FUNCTIONS
    Bracken, Carl
    Zha, Zhengbang
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2009, 3 (03) : 219 - 226
  • [29] On equivalence between known families of quadratic APN functions
    Budaghyan, Lilya
    Calderini, Marco
    Villa, Irene
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 66
  • [30] Constructing more quadratic APN functions with the QAM method
    Yu, Yuyin
    Perrin, Leo
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2022, 14 (06): : 1359 - 1369