Multi-dimensional quantum state sharing based on quantum Fourier transform

被引:1
|
作者
Huawang Qin
Raylin Tso
Yuewei Dai
机构
[1] Nanjing University of Science and Technology,School of Automatization
[2] National Chengchi University,Department of Computer Science
来源
关键词
Quantum secret sharing; Quantum Fourier transform; Quantum SUM gate; Quantum cryptography;
D O I
暂无
中图分类号
学科分类号
摘要
A scheme of multi-dimensional quantum state sharing is proposed. The dealer performs the quantum SUM gate and the quantum Fourier transform to encode a multi-dimensional quantum state into an entanglement state. Then the dealer distributes each participant a particle of the entanglement state, to share the quantum state among n participants. In the recovery, n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document} participants measure their particles and supply their measurement results; the last participant performs the unitary operation on his particle according to these measurement results and can reconstruct the initial quantum state. The proposed scheme has two merits: It can share the multi-dimensional quantum state and it does not need the entanglement measurement.
引用
收藏
相关论文
共 50 条
  • [41] Key distribution based on Quantum Fourier Transform
    Nagy, Marius
    Akl, Selim G.
    Kershaw, Sean
    INTERNATIONAL JOURNAL OF SECURITY AND ITS APPLICATIONS, 2009, 3 (04): : 45 - 67
  • [42] Key distribution based on Quantum Fourier Transform
    Nagy, Marius
    Akl, Selim G.
    Kershaw, Sean
    SECRYPT 2008: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY, 2008, : 263 - 269
  • [43] Efficient Quantum Blind Signature Scheme Based on Quantum Fourier Transform
    Zhu, Hongfeng
    Zhang, Yuanle
    Li, Zexi
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (06) : 2311 - 2321
  • [44] Efficient Quantum Blind Signature Scheme Based on Quantum Fourier Transform
    Hongfeng Zhu
    Yuanle Zhang
    Zexi Li
    International Journal of Theoretical Physics, 2021, 60 : 2311 - 2321
  • [45] Quantum arithmetic operations based on quantum fourier transform on signed integers
    Sahin, Engin
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2020, 18 (06)
  • [46] Bilinear interpolation method for quantum images based on quantum Fourier transform
    Li, Panchi
    Liu, Xiande
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2018, 16 (04)
  • [47] Quantum secret sharing by using Fourier transform on orbital angular momentum
    Qin, Huawang
    Tso, Raylin
    Dai, Yuewei
    IET INFORMATION SECURITY, 2019, 13 (02) : 104 - 108
  • [48] Quantum process tomography of the quantum Fourier transform
    Weinstein, YS
    Havel, TF
    Emerson, J
    Boulant, N
    Saraceno, M
    Lloyd, S
    Cory, DG
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (13): : 6117 - 6133
  • [49] Quantum Fourier transform for nanoscale quantum sensing
    Vadim Vorobyov
    Sebastian Zaiser
    Nikolas Abt
    Jonas Meinel
    Durga Dasari
    Philipp Neumann
    Jörg Wrachtrup
    npj Quantum Information, 7
  • [50] FPS-SFT: A MULTI-DIMENSIONAL SPARSE FOURIER TRANSFORM BASED ON THE FOURIER PROJECTION-SLICE THEOREM
    Wang, Shaogang
    Patel, Vishal M.
    Petropulu, Athina
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 4729 - 4733