Normal forms on contracting foliations: smoothness and homogeneous structure

被引:0
|
作者
Boris Kalinin
Victoria Sadovskaya
机构
[1] The Pennsylvania State University,Department of Mathematics
来源
Geometriae Dedicata | 2016年 / 183卷
关键词
Normal form; Contracting foliation; Narrow band spectrum; Polynomial map; Homogeneous structure; 37D30; 37D10; 34C20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider a diffeomorphism f of a compact manifold M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} which contracts an invariant foliation W with smooth leaves. If the differential of f on TW has narrow band spectrum, there exist coordinates Hx:Wx→TxW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_x:W_x\rightarrow T_xW$$\end{document} in which f|W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f|_W$$\end{document} has polynomial form. We present a modified approach that allows us to construct maps Hx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_x$$\end{document} that depend smoothly on x along the leaves of W. Moreover, we show that on each leaf they give a coherent atlas with transition maps in a finite dimensional Lie group. Our results apply, in particular, to C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-small perturbations of algebraic systems.
引用
收藏
页码:181 / 194
页数:13
相关论文
共 50 条
  • [1] Normal forms on contracting foliations: smoothness and homogeneous structure
    Kalinin, Boris
    Sadovskaya, Victoria
    GEOMETRIAE DEDICATA, 2016, 183 (01) : 181 - 194
  • [2] Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations
    Guysinsky, M
    Katok, A
    MATHEMATICAL RESEARCH LETTERS, 1998, 5 (1-2) : 149 - 163
  • [3] HOMOGENEOUS LAGRANGIAN FOLIATIONS ON COMPLEX SPACE FORMS
    Diaz-Ramos, Jose Carlos
    Dominguez-Vazquez, Miguel
    Hashinaga, Takahiro
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (02) : 823 - 833
  • [4] ANALYTIC NORMAL FORMS OF GERMS OF HOLOMORPHIC DICRITIC FOLIATIONS
    Ortiz-Bobadilla, L.
    Rosales-Gonzalez, E.
    Voronin, S. M.
    MOSCOW MATHEMATICAL JOURNAL, 2008, 8 (03) : 521 - 545
  • [5] Analytic Normal Forms for Foliations Generated by Binary Equations
    Cherepanova, E. A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (03) : 1119 - 1124
  • [6] Analytic Normal Forms for Foliations Generated by Binary Equations
    E. A. Cherepanova
    Lobachevskii Journal of Mathematics, 2023, 44 : 1119 - 1124
  • [7] FORMAL AND ANALYTIC NORMAL FORMS OF GERMS OF HOLOMORPHIC NONDICRITIC FOLIATIONS
    Ortiz-Bobadilla, L.
    Rosales-Gonzalez, E.
    Voronin, S. M.
    JOURNAL OF SINGULARITIES, 2014, 9 : 168 - 192
  • [8] Quasi-homogeneous normal forms
    Algaba, A
    Freire, E
    Gamero, E
    García, C
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 150 (01) : 193 - 216
  • [9] HOMOGENEOUS FOLIATIONS OF SPHERES
    LU, DJ
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 340 (01) : 95 - 102
  • [10] On rigidity of germs of holomorphic dicritic foliations and formal normal forms.
    Rosales-Gonzalez, E.
    SINGULARITIES IN GEOMETRY AND TOPOLOGY, 2005, 2007, : 705 - 722