HOMOGENEOUS LAGRANGIAN FOLIATIONS ON COMPLEX SPACE FORMS

被引:1
|
作者
Diaz-Ramos, Jose Carlos [1 ,2 ]
Dominguez-Vazquez, Miguel [1 ,2 ]
Hashinaga, Takahiro [3 ]
机构
[1] Citmaga, Santiago De Compostela 15782, Spain
[2] Univ Santiago De Compostela, Dept Math, Santiago De Compostela, Spain
[3] Saga Univ, Fac Educ, Saga, Japan
关键词
Homogeneous Lagrangian foliation; Lagrangian submanifold; isomet-ric action; complex space form; complex hyperbolic space; horocycle foliation; SUBMANIFOLDS;
D O I
10.1090/proc/16144
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify holomorphic isometric actions on complex space forms all of whose orbits are Lagrangian submanifolds, up to orbit equivalence. The only examples are Lagrangian affine subspace foliations of complex Euclidean spaces, and Lagrangian horocycle foliations of complex hyperbolic spaces.
引用
收藏
页码:823 / 833
页数:11
相关论文
共 50 条
  • [1] Lagrangian Bonnet Problems in Complex Space Forms
    Hui Xia HE
    Hui MA
    Er Xiao WANG
    Acta Mathematica Sinica,English Series, 2019, 35 (08) : 1357 - 1366
  • [2] Lagrangian Bonnet Problems in Complex Space Forms
    Hui Xia He
    Hui Ma
    Er Xiao Wang
    Acta Mathematica Sinica, English Series, 2019, 35 : 1357 - 1366
  • [3] Ideal Lagrangian immersions in complex space forms
    Chen, BY
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2000, 128 : 511 - 533
  • [4] Lagrangian Bonnet Problems in Complex Space Forms
    Hui Xia HE
    Hui MA
    Er Xiao WANG
    ActaMathematicaSinica, 2019, 35 (08) : 1357 - 1366
  • [5] Lagrangian Bonnet Problems in Complex Space Forms
    He, Hui Xia
    Ma, Hui
    Wang, Er Xiao
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (08) : 1357 - 1366
  • [6] On Product Minimal Lagrangian Submanifolds in Complex Space Forms
    Cheng, Xiuxiu
    Hu, Zejun
    Moruz, Marilena
    Vrancken, Luc
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (02) : 1934 - 1964
  • [7] Gap theorems for Lagrangian submanifolds in complex space forms
    Shunjuan Cao
    Entao Zhao
    Geometriae Dedicata, 2021, 215 : 315 - 331
  • [8] RICCI CURVATURE OF LAGRANGIAN SUBMANIFOLDS IN COMPLEX SPACE FORMS
    Oprea, Teodor
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (04): : 851 - 858
  • [9] On Product Minimal Lagrangian Submanifolds in Complex Space Forms
    Xiuxiu Cheng
    Zejun Hu
    Marilena Moruz
    Luc Vrancken
    The Journal of Geometric Analysis, 2021, 31 : 1934 - 1964
  • [10] Gap theorems for Lagrangian submanifolds in complex space forms
    Cao, Shunjuan
    Zhao, Entao
    GEOMETRIAE DEDICATA, 2021, 215 (01) : 315 - 331