Normal forms on contracting foliations: smoothness and homogeneous structure

被引:0
|
作者
Boris Kalinin
Victoria Sadovskaya
机构
[1] The Pennsylvania State University,Department of Mathematics
来源
Geometriae Dedicata | 2016年 / 183卷
关键词
Normal form; Contracting foliation; Narrow band spectrum; Polynomial map; Homogeneous structure; 37D30; 37D10; 34C20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider a diffeomorphism f of a compact manifold M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} which contracts an invariant foliation W with smooth leaves. If the differential of f on TW has narrow band spectrum, there exist coordinates Hx:Wx→TxW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_x:W_x\rightarrow T_xW$$\end{document} in which f|W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f|_W$$\end{document} has polynomial form. We present a modified approach that allows us to construct maps Hx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_x$$\end{document} that depend smoothly on x along the leaves of W. Moreover, we show that on each leaf they give a coherent atlas with transition maps in a finite dimensional Lie group. Our results apply, in particular, to C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-small perturbations of algebraic systems.
引用
收藏
页码:181 / 194
页数:13
相关论文
共 50 条