Normal form;
Contracting foliation;
Narrow band spectrum;
Polynomial map;
Homogeneous structure;
37D30;
37D10;
34C20;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper we consider a diffeomorphism f of a compact manifold M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {M}$$\end{document} which contracts an invariant foliation W with smooth leaves. If the differential of f on TW has narrow band spectrum, there exist coordinates Hx:Wx→TxW\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {H}}_x:W_x\rightarrow T_xW$$\end{document} in which f|W\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f|_W$$\end{document} has polynomial form. We present a modified approach that allows us to construct maps Hx\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {H}}_x$$\end{document} that depend smoothly on x along the leaves of W. Moreover, we show that on each leaf they give a coherent atlas with transition maps in a finite dimensional Lie group. Our results apply, in particular, to C1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C^1$$\end{document}-small perturbations of algebraic systems.