Reduction in the Resonance Error in Numerical Homogenization II: Correctors and Extrapolation

被引:0
|
作者
Antoine Gloria
Zakaria Habibi
机构
[1] Université Libre de Bruxelles (ULB),Project
[2] Inria Lille - Nord Europe,Team MEPHYSTO
关键词
Numerical homogenization; Resonance error; Effective coefficients; Correctors; Periodic; Almost periodic; Random; 35J15; 35B27; 65N12; 65N15; 65B05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is the follow-up of Gloria (Math Models Methods Appl Sci 21(8):1601–1630, 2011). One common drawback among numerical homogenization methods is the presence of the so-called resonance error, which roughly speaking is a function of the ratio ερ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\varepsilon }{\rho }$$\end{document}, where ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} is a typical macroscopic lengthscale and ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} is the typical size of the heterogeneities. In the present work, we make a systematic use of regularization and extrapolation to reduce this resonance error at the level of the approximation of homogenized coefficients and correctors for general non-necessarily symmetric stationary ergodic coefficients. We quantify this reduction for the class of periodic coefficients, for the Kozlov subclass of almost-periodic coefficients, and for the subclass of random coefficients that satisfy a spectral gap estimate (e.g., Poisson random inclusions). We also report on a systematic numerical study in dimension 2, which demonstrates the efficiency of the method and the sharpness of the analysis. Last, we combine this approach to numerical homogenization methods, prove the asymptotic consistency in the case of locally stationary ergodic coefficients, and give quantitative estimates in the case of periodic coefficients.
引用
收藏
页码:217 / 296
页数:79
相关论文
共 50 条
  • [41] Biodiversity Soup II: A bulk-sample metabarcoding pipeline emphasizing error reduction
    Yang, Chunyan
    Bohmann, Kristine
    Wang, Xiaoyang
    Cai, Wang
    Wales, Nathan
    Ding, Zhaoli
    Gopalakrishnan, Shyam
    Yu, Douglas W.
    METHODS IN ECOLOGY AND EVOLUTION, 2021, 12 (07): : 1252 - 1264
  • [42] Reduction of forecast error for global numerical weather prediction by The Florida State University (FSU) Superensemble
    Ross, RS
    Krishnamurti, TN
    METEOROLOGY AND ATMOSPHERIC PHYSICS, 2005, 88 (3-4) : 215 - 235
  • [43] Numerical solutions of the time-dependent Schrodinger equation: Reduction of the error due to space discretization
    Shao, Hezhu
    Wang, Zhongcheng
    PHYSICAL REVIEW E, 2009, 79 (05)
  • [44] Reduction of forecast error for global numerical weather prediction by The Florida State University (FSU) Superensemble
    R. S. Ross
    T. N. Krishnamurti
    Meteorology and Atmospheric Physics, 2005, 88 : 215 - 235
  • [45] On error controlled numerical model reduction in FE2-analysis of transient heat flow
    Ekre, Fredrik
    Larsson, Fredrik
    Runesson, Kenneth
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 119 (01) : 38 - 73
  • [46] Combining spectral and POD modes to improve error estimation of numerical model reduction for porous media
    Ekre, Fredrik
    Larsson, Fredrik
    Runesson, Kenneth
    Janicke, Ralf
    COMPUTATIONAL MECHANICS, 2022, 69 (03) : 767 - 786
  • [47] Combining spectral and POD modes to improve error estimation of numerical model reduction for porous media
    Fredrik Ekre
    Fredrik Larsson
    Kenneth Runesson
    Ralf Jänicke
    Computational Mechanics, 2022, 69 : 767 - 786
  • [48] Wave Propagation Feature in Two-Dimensional Periodic Beam Lattices with Local Resonance by Numerical Method and Analytical Homogenization Approach
    Zhou, C. W.
    Sun, X. K.
    Laine, P.
    Ichchou, M. N.
    Zine, A.
    Hans, S.
    Boutin, C.
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2018, 10 (04)
  • [49] Behavior of numerical error in pore-scale lattice Boltzmann simulations with simple bounce-back rule: Analysis and highly accurate extrapolation
    Khirevich, Siarhei
    Patzek, Tadeusz W.
    PHYSICS OF FLUIDS, 2018, 30 (09)
  • [50] Structural optimization in magnetic fields using the homogenization design method - Part II: Reduction of vibration caused by magnetic forces
    Yoo, J
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2002, 9 (03) : 257 - 282