Numerical solutions of the time-dependent Schrodinger equation: Reduction of the error due to space discretization

被引:60
|
作者
Shao, Hezhu [1 ]
Wang, Zhongcheng [1 ]
机构
[1] Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China
关键词
difference equations; error analysis; mathematical operators; quantum theory; Schrodinger equation;
D O I
10.1103/PhysRevE.79.056705
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present an improved space-discretization scheme for the numerical solutions of the time-dependent Schrodinger equation. Compared to the scheme of W. van Dijk and F. M. Toyama [Phys. Rev. E 75, 036707 (2007)], the present one, which contains more terms of second-order partial derivatives, greatly reduces the error resulting from the spatial integration. For a (2l+1)-point formula with (2l+1) terms of second-order partial derivatives, the local truncation error can decrease from the order of (Delta x)(2l) to (Delta x)(4l), while the previous one contains only one term of second-order partial derivative. Two well-known numerical examples and the corresponding error analysis demonstrate that the present scheme has an advantage in the precision and efficiency over the previous one.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] On numerical solutions of the time-dependent Schrodinger equation
    van Dijk, Wytse
    AMERICAN JOURNAL OF PHYSICS, 2023, 91 (10) : 826 - 839
  • [2] Accurate numerical solutions of the time-dependent Schrodinger equation
    van Dijk, W.
    Toyama, F. M.
    PHYSICAL REVIEW E, 2007, 75 (03):
  • [3] A Study of Numerical Solutions of the Time-Dependent Schrodinger Equation
    Amin, N. A. M.
    Wong, B. R.
    22ND NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM22), 2015, 1682
  • [4] Efficiency and accuracy of numerical solutions to the time-dependent Schrodinger equation
    van Dijk, W.
    Brown, J.
    Spyksma, K.
    PHYSICAL REVIEW E, 2011, 84 (05):
  • [5] Efficient explicit numerical solutions of the time-dependent Schrodinger equation
    van Dijk, W.
    PHYSICAL REVIEW E, 2022, 105 (02)
  • [6] Numerical solutions of the time-dependent Schrodinger equation in two dimensions
    van Dijk, Wytse
    Vanderwoerd, Trevor
    Prins, Sjirk-Jan
    PHYSICAL REVIEW E, 2017, 95 (02)
  • [7] On the time-dependent solutions of the Schrodinger equation
    Palma, Alejandro
    Pedraza, I.
    TOPICS IN THE THEORY OF CHEMICAL AND PHYSICAL SYSTEMS, 2007, 16 : 147 - +
  • [8] Numerical time-dependent solutions of the Schrodinger equation with piecewise continuous potentials
    van Dijk, Wytse
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [9] Numerical solutions of the Schrodinger equation with source terms or time-dependent potentials
    van Dijk, W.
    Toyama, F. M.
    PHYSICAL REVIEW E, 2014, 90 (06):
  • [10] On the Numerical Solution of the Time-Dependent Schrodinger Equation with Time-Dependent Potentials
    Rizea, M.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 1011 - 1015