Numerical solutions of the time-dependent Schrodinger equation: Reduction of the error due to space discretization

被引:60
|
作者
Shao, Hezhu [1 ]
Wang, Zhongcheng [1 ]
机构
[1] Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China
关键词
difference equations; error analysis; mathematical operators; quantum theory; Schrodinger equation;
D O I
10.1103/PhysRevE.79.056705
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present an improved space-discretization scheme for the numerical solutions of the time-dependent Schrodinger equation. Compared to the scheme of W. van Dijk and F. M. Toyama [Phys. Rev. E 75, 036707 (2007)], the present one, which contains more terms of second-order partial derivatives, greatly reduces the error resulting from the spatial integration. For a (2l+1)-point formula with (2l+1) terms of second-order partial derivatives, the local truncation error can decrease from the order of (Delta x)(2l) to (Delta x)(4l), while the previous one contains only one term of second-order partial derivative. Two well-known numerical examples and the corresponding error analysis demonstrate that the present scheme has an advantage in the precision and efficiency over the previous one.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Exact solutions to three-dimensional time-dependent Schrodinger equation
    Chand, Fakir
    Mishra, S. C.
    PRAMANA-JOURNAL OF PHYSICS, 2007, 68 (06): : 891 - 900
  • [42] OPTIMIZATION OF APPROXIMATE SOLUTIONS TO THE TIME-DEPENDENT SCHRODINGER-EQUATION - REPLY
    WEGLEIN, AB
    PHYSICAL REVIEW A, 1985, 31 (06): : 4025 - 4025
  • [43] ON THE ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF THE TIME-DEPENDENT SCHRODINGER-EQUATION
    JAFAEV, DR
    MATHEMATICS OF THE USSR-SBORNIK, 1981, 39 (02): : 169 - 188
  • [44] Solutions of the time-dependent Schrodinger equation for a two-state system
    Ralph, JF
    Clark, TD
    Prance, H
    Prance, RJ
    Widom, A
    Srivastava, YN
    FOUNDATIONS OF PHYSICS, 1998, 28 (08) : 1271 - 1282
  • [45] OPTIMIZATION OF APPROXIMATE SOLUTIONS TO THE TIME-DEPENDENT SCHRODINGER-EQUATION - COMMENT
    MAIDAGAN, JM
    PIACENTINI, RD
    PHYSICAL REVIEW A, 1985, 31 (06): : 4023 - 4024
  • [46] Analytic time-dependent solutions of the one-dimensional Schrodinger equation
    van Dijk, Wytse
    Toyama, F. Masafumi
    Prins, Sjirk Jan
    Spyksma, Kyle
    AMERICAN JOURNAL OF PHYSICS, 2014, 82 (10) : 955 - 961
  • [47] Global error control of the time-propagation for the Schrodinger equation with a time-dependent Hamiltonian
    Kormann, K.
    Holmgren, S.
    Karlsson, H. O.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2011, 2 (02) : 178 - 187
  • [48] Absorbing boundaries in numerical solutions of the time-dependent Schrodinger equation on a grid using exterior complex scaling
    He, F.
    Ruiz, C.
    Becker, A.
    PHYSICAL REVIEW A, 2007, 75 (05):
  • [49] Mixed problems for the time-dependent telegraph equation: Continuous numerical solutions with A priori error bounds
    Almenar, P
    Jodar, L
    Martin, JA
    MATHEMATICAL AND COMPUTER MODELLING, 1997, 25 (11) : 31 - 44