Triangulated categories and Kac-Moody algebras

被引:1
|
作者
Liangang Peng
Jie Xiao
机构
[1] Department of Mathematics,
[2] Sichuan University,undefined
[3] 610064 Chengdu,undefined
[4] PR China¶(e-mail: penglg@mail.sc.cninfo.net),undefined
[5] Department of Mathematics,undefined
[6] Tsinghua University,undefined
[7] 100084 Beijing,undefined
[8] PR China¶(e-mail: jxiao@math.tsinghua.edu.cn),undefined
来源
Inventiones mathematicae | 2000年 / 140卷
关键词
Mathematics Subject Classification (1991): 16G20, 17B67; Secondary 16G10, 17B37;
D O I
暂无
中图分类号
学科分类号
摘要
By using the Ringel-Hall algebra approach, we find a Lie algebra arising in each triangulated category with T2=1, where T is the translation functor. In particular, the generic form of the Lie algebras determined by the root categories, the 2-period orbit categories of the derived categories of finite dimensional hereditary associative algebras, gives a realization of all symmetrizable Kac-Moody Lie algebras.
引用
收藏
页码:563 / 603
页数:40
相关论文
共 50 条
  • [41] HYPERBOLIC STRINGS AND KAC-MOODY ALGEBRAS
    POPOV, AD
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1990, 52 (04): : 761 - 768
  • [42] EXTENDED KAC-MOODY ALGEBRAS AND APPLICATIONS
    RAGOUCY, E
    SORBA, P
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (13): : 2883 - 2971
  • [43] Birational equivalences and Kac-Moody algebras
    Kaygun, Atabey
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 193
  • [44] Deformed Kac-Moody and Virasoro algebras
    Balachandran, A. P.
    Queiroz, A. R.
    Marques, A. M.
    Teotonio-Sobrinho, P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (27) : 7789 - 7801
  • [45] Deformed Kac-Moody algebras and their representations
    Liu, Jianbo
    Zhao, Kaiming
    JOURNAL OF ALGEBRA, 2008, 319 (11) : 4692 - 4711
  • [46] GROUPS ASSOCIATED WITH KAC-MOODY ALGEBRAS
    TITS, J
    ASTERISQUE, 1989, (177-78) : 7 - 31
  • [47] Kac-Moody groups and cluster algebras
    Geiss, Christof
    Leclerc, Bernard
    Schroeer, Jan
    ADVANCES IN MATHEMATICS, 2011, 228 (01) : 329 - 433
  • [48] Quiver varieties and Kac-Moody algebras
    Nakajima, H
    DUKE MATHEMATICAL JOURNAL, 1998, 91 (03) : 515 - 560
  • [49] Identities of affine Kac-Moody algebras
    Zaicev, MV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1996, (02): : 33 - 36
  • [50] Rigid reflections and Kac-Moody algebras
    Kyu-Hwan Lee
    Kyungyong Lee
    Science China Mathematics, 2019, 62 : 1317 - 1330