Triangulated categories and Kac-Moody algebras

被引:1
|
作者
Liangang Peng
Jie Xiao
机构
[1] Department of Mathematics,
[2] Sichuan University,undefined
[3] 610064 Chengdu,undefined
[4] PR China¶(e-mail: penglg@mail.sc.cninfo.net),undefined
[5] Department of Mathematics,undefined
[6] Tsinghua University,undefined
[7] 100084 Beijing,undefined
[8] PR China¶(e-mail: jxiao@math.tsinghua.edu.cn),undefined
来源
Inventiones mathematicae | 2000年 / 140卷
关键词
Mathematics Subject Classification (1991): 16G20, 17B67; Secondary 16G10, 17B37;
D O I
暂无
中图分类号
学科分类号
摘要
By using the Ringel-Hall algebra approach, we find a Lie algebra arising in each triangulated category with T2=1, where T is the translation functor. In particular, the generic form of the Lie algebras determined by the root categories, the 2-period orbit categories of the derived categories of finite dimensional hereditary associative algebras, gives a realization of all symmetrizable Kac-Moody Lie algebras.
引用
收藏
页码:563 / 603
页数:40
相关论文
共 50 条
  • [31] Kac-Moody algebras and controlled chaos
    Wesley, Daniel H.
    CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (04) : F7 - F13
  • [32] REPRESENTATIONS OF KAC-MOODY ALGEBRAS BY STEP ALGEBRAS
    MICKELSSON, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (03) : 377 - 382
  • [33] Varieties of affine Kac-Moody algebras
    M. V. Zaitsev
    Mathematical Notes, 1997, 62 : 80 - 86
  • [34] SOME FORMS OF KAC-MOODY ALGEBRAS
    ANDRUSKIEWITSCH, N
    JOURNAL OF ALGEBRA, 1992, 147 (02) : 324 - 344
  • [35] CONFORMAL SUBALGEBRAS OF KAC-MOODY ALGEBRAS
    SCHELLEKENS, AN
    WARNER, NP
    PHYSICAL REVIEW D, 1986, 34 (10): : 3092 - 3096
  • [36] AUTOMORPHISMS OF AFFINE KAC-MOODY ALGEBRAS
    BAUSCH, J
    TITS, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 302 (11): : 409 - 412
  • [37] Supercategorification of quantum Kac-Moody algebras
    Kang, Seok-Jin
    Kashiwara, Masaki
    Oh, Se-jin
    ADVANCES IN MATHEMATICS, 2013, 242 : 116 - 162
  • [38] Maximal subalgebras of Kac-Moody algebras
    El Souidi, M
    Zaoui, M
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (07) : 2573 - 2588
  • [39] Characters of affine Kac-Moody algebras
    Hussin, A
    King, RC
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 162 - 166
  • [40] Rigid reflections and Kac-Moody algebras
    Kyu-Hwan Lee
    Kyungyong Lee
    ScienceChina(Mathematics), 2019, 62 (07) : 1317 - 1330