From LaH10 to room–temperature superconductors

被引:0
|
作者
M. Kostrzewa
K. M. Szczęśniak
A. P. Durajski
R. Szczęśniak
机构
[1] Jan Długosz University in Częstochowa,Institute of Physics
[2] University of Warsaw,Faculty of Chemistry
[3] Częstochowa University of Technology,Institute of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Thermodynamic parameters of the LaH10 superconductor were an object of our interest. LaH10 is characterised by the highest experimentally observed value of the critical temperature: TCa=215\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{{\boldsymbol{a}}}={\bf{215}}$$\end{document} K (pa = 150 GPa) and TCb=260\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{b}={\bf{260}}$$\end{document} K (pb = 190 GPa). It belongs to the group of superconductors with a strong electron-phonon coupling (λa ~ 2.2 and λb ~ 2.8). We calculated the thermodynamic parameters of this superconductor and found that the values of the order parameter, the thermodynamic critical field, and the specific heat differ significantly from the values predicted by the conventional BCS theory. Due to the specific structure of the Eliashberg function for the hydrogenated compounds, the qualitative analysis suggests that the superconductors of the LaδX1−δH10-type (LaXH-type) structure, where X ∈ {Sc, Y}, would exhibit significantly higher critical temperature than TC obtained for LaH10. In the case of LaScH we came to the following assessments: TCa∈220,267\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{{\boldsymbol{a}}}\in \left\langle {\bf{220}},{\bf{267}}\right\rangle $$\end{document} K and TCb∈263,294\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{{\boldsymbol{b}}}\in \left\langle {\bf{263}},{\bf{294}}\right\rangle $$\end{document} K, while the results for LaYH were: TCa∈218,247\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{{\boldsymbol{a}}}\in \left\langle {\bf{218}},{\bf{247}}\right\rangle $$\end{document} K and TCb∈261,274\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{{\boldsymbol{b}}}\in \left\langle {\bf{261}},{\bf{274}}\right\rangle $$\end{document} K.
引用
收藏
相关论文
共 50 条
  • [41] Room-temperature-deposited dielectrics and superconductors for integrated photonics
    Shainline, Jeffrey M.
    Buckley, Sonia M.
    Nader, Nima
    Gentry, Cale M.
    Cossel, Kevin C.
    Cleary, Justin W.
    Popovic, Milos
    Newbury, Nathan R.
    Nam, Sae Woo
    Mirin, Richard P.
    OPTICS EXPRESS, 2017, 25 (09): : 10322 - 10334
  • [42] Tensile and bending mechanical properties of bulk superconductors at room temperature
    Katagiri, K
    Murakami, A
    Shoji, Y
    Teshima, H
    Sawamura, M
    Iwamoto, A
    Mito, T
    Murakami, M
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2004, 412 : 633 - 637
  • [43] How would room-temperature superconductors change science?
    Davide Castelvecchi
    Nature, 2023, 621 (7977) : 18 - 19
  • [45] Coherence length versus transition temperature of hydride-based and room temperature superconductors
    Abd-Shukor, R.
    RESULTS IN PHYSICS, 2021, 25
  • [46] The design of high-Tc superconductors - Room-temperature superconductivity?
    Tallon, J. L.
    Storey, J. G.
    Mallett, B.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2012, 482 : 45 - 49
  • [47] Mechanical properties of Gd123 bulk superconductors at room temperature
    Murakami, A
    Katagiri, K
    Kasaba, K
    Shoji, Y
    Noto, K
    Teshima, H
    Sawamura, M
    Murakami, M
    CRYOGENICS, 2003, 43 (06) : 345 - 350
  • [48] Bibliometric analysis of artificial intelligence in high-to-room temperature superconductors: insights from the Scopus database
    Pramono, Andika Widya
    Nurhakim, Arif
    JOURNAL OF SCIENCE AND TECHNOLOGY POLICY MANAGEMENT, 2025,
  • [49] MAGNETIC REFRIGERATION IN THE TEMPERATURE-RANGE FROM 10 K TO ROOM-TEMPERATURE - THE FERROMAGNETIC REFRIGERANTS
    HASHIMOTO, T
    NUMASAWA, T
    SHINO, M
    OKADA, T
    CRYOGENICS, 1981, 21 (11) : 647 - 653
  • [50] Engineering room-temperature superconductors via ab-initio calculations
    Gulian, Mamikon
    Melkonyan, Gurgen
    Gulian, Armen
    PROCEEDINGS OF THE 25TH INTERNATIONAL CRYOGENIC ENGINEERING CONFERENCE AND INTERNATIONAL CRYOGENIC MATERIALS CONFERENCE 2014, 2015, 67 : 963 - 969