From LaH10 to room–temperature superconductors

被引:0
|
作者
M. Kostrzewa
K. M. Szczęśniak
A. P. Durajski
R. Szczęśniak
机构
[1] Jan Długosz University in Częstochowa,Institute of Physics
[2] University of Warsaw,Faculty of Chemistry
[3] Częstochowa University of Technology,Institute of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Thermodynamic parameters of the LaH10 superconductor were an object of our interest. LaH10 is characterised by the highest experimentally observed value of the critical temperature: TCa=215\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{{\boldsymbol{a}}}={\bf{215}}$$\end{document} K (pa = 150 GPa) and TCb=260\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{b}={\bf{260}}$$\end{document} K (pb = 190 GPa). It belongs to the group of superconductors with a strong electron-phonon coupling (λa ~ 2.2 and λb ~ 2.8). We calculated the thermodynamic parameters of this superconductor and found that the values of the order parameter, the thermodynamic critical field, and the specific heat differ significantly from the values predicted by the conventional BCS theory. Due to the specific structure of the Eliashberg function for the hydrogenated compounds, the qualitative analysis suggests that the superconductors of the LaδX1−δH10-type (LaXH-type) structure, where X ∈ {Sc, Y}, would exhibit significantly higher critical temperature than TC obtained for LaH10. In the case of LaScH we came to the following assessments: TCa∈220,267\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{{\boldsymbol{a}}}\in \left\langle {\bf{220}},{\bf{267}}\right\rangle $$\end{document} K and TCb∈263,294\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{{\boldsymbol{b}}}\in \left\langle {\bf{263}},{\bf{294}}\right\rangle $$\end{document} K, while the results for LaYH were: TCa∈218,247\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{{\boldsymbol{a}}}\in \left\langle {\bf{218}},{\bf{247}}\right\rangle $$\end{document} K and TCb∈261,274\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{{\boldsymbol{b}}}\in \left\langle {\bf{261}},{\bf{274}}\right\rangle $$\end{document} K.
引用
收藏
相关论文
共 50 条
  • [21] Possibility for the anisotropic acoustic plasmons in LaH10 and their role in enhancement of the critical temperature of superconducting transition
    Pashitskii, E.A.
    Pentegov, V.I.
    Semenov, A.V.
    Fizika Nizkikh Temperatur, 2022, 48 (01): : 30 - 35
  • [22] Collective acoustic electronic excitations in LaH10 as a factor in boosting of the critical temperature of superconducting transition
    Pashitskii, Ernst A.
    Pentegov, Vsevolod, I
    Semenov, Alexei, V
    SN APPLIED SCIENCES, 2022, 4 (07):
  • [23] Quantum and temperature effects on the crystal structure of superhydride LaH10: A path integral molecular dynamics study
    Watanabe, Yuta
    Nomoto, Takuya
    Arita, Ryotaro
    PHYSICAL REVIEW B, 2022, 105 (17)
  • [24] Evidence of Phonon-Mediated Superconductivity in LaH10 at High Pressure
    Durajski, Artur P.
    Wang, Chongze
    Li, Yinwei
    Szczesniak, Radoslaw
    Cho, Jun-Hyung
    ANNALEN DER PHYSIK, 2021, 533 (03)
  • [25] Prediction of an unusual trigonal phase of superconducting LaH10 stable at high pressures
    Verma, Ashok K.
    Modak, P.
    Schrodi, Fabian
    Aperis, Alex
    Oppeneer, Peter M.
    PHYSICAL REVIEW B, 2021, 104 (17)
  • [26] Extremely Narrow Superconducting Band with Crystal Spin 3/2? in LaH10
    Krueger, Ekkehard
    SYMMETRY-BASEL, 2023, 15 (08):
  • [27] Stability and distortion of fcc LaH10 with path-integral molecular dynamics
    Ly, Kevin K.
    Ceperley, David M.
    PHYSICAL REVIEW B, 2022, 106 (05)
  • [28] Effects of pseudopotentials and exchange-correlation functionals on phase transition of LaH10
    Sura, Sumita
    Verma, Ashok K.
    Garg, Nandini
    SOLID STATE COMMUNICATIONS, 2022, 341
  • [29] Zero-point quantum diffusion of protons in the hydrogen-rich superconductor LaH10 from first principles
    Qin, Xuejian
    Wu, Hongyu
    Shi, Guoyong
    Zhang, Chao
    Jiang, Peiheng
    Zhong, Zhicheng
    PHYSICAL REVIEW B, 2023, 108 (06)
  • [30] Room temperature superconductors
    Durrani, Jamie
    Chemistry World, 2020, 17 (10): : 26 - 27