From LaH10 to room–temperature superconductors

被引:0
|
作者
M. Kostrzewa
K. M. Szczęśniak
A. P. Durajski
R. Szczęśniak
机构
[1] Jan Długosz University in Częstochowa,Institute of Physics
[2] University of Warsaw,Faculty of Chemistry
[3] Częstochowa University of Technology,Institute of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Thermodynamic parameters of the LaH10 superconductor were an object of our interest. LaH10 is characterised by the highest experimentally observed value of the critical temperature: TCa=215\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{{\boldsymbol{a}}}={\bf{215}}$$\end{document} K (pa = 150 GPa) and TCb=260\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{b}={\bf{260}}$$\end{document} K (pb = 190 GPa). It belongs to the group of superconductors with a strong electron-phonon coupling (λa ~ 2.2 and λb ~ 2.8). We calculated the thermodynamic parameters of this superconductor and found that the values of the order parameter, the thermodynamic critical field, and the specific heat differ significantly from the values predicted by the conventional BCS theory. Due to the specific structure of the Eliashberg function for the hydrogenated compounds, the qualitative analysis suggests that the superconductors of the LaδX1−δH10-type (LaXH-type) structure, where X ∈ {Sc, Y}, would exhibit significantly higher critical temperature than TC obtained for LaH10. In the case of LaScH we came to the following assessments: TCa∈220,267\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{{\boldsymbol{a}}}\in \left\langle {\bf{220}},{\bf{267}}\right\rangle $$\end{document} K and TCb∈263,294\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{{\boldsymbol{b}}}\in \left\langle {\bf{263}},{\bf{294}}\right\rangle $$\end{document} K, while the results for LaYH were: TCa∈218,247\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{{\boldsymbol{a}}}\in \left\langle {\bf{218}},{\bf{247}}\right\rangle $$\end{document} K and TCb∈261,274\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{T}}}_{{\boldsymbol{C}}}^{{\boldsymbol{b}}}\in \left\langle {\bf{261}},{\bf{274}}\right\rangle $$\end{document} K.
引用
收藏
相关论文
共 50 条
  • [1] From LaH10 to room-temperature superconductors
    Kostrzewa, M.
    Szczesniak, K. M.
    Durajski, A. P.
    Szczesniak, R.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [2] Room-temperature transitional transport in LaH10
    Chu, Kwang-Hua R.
    CHEMICAL PHYSICS LETTERS, 2020, 748
  • [3] Microscopic mechanism of room-temperature superconductivity in compressed LaH10
    Liu, Liangliang
    Wang, Chongze
    Yi, Seho
    Kim, Kun Woo
    Kim, Jaeyong
    Cho, Jun-Hyung
    PHYSICAL REVIEW B, 2019, 99 (14)
  • [4] Multiband nature of room-temperature superconductivity in LaH10 at high pressure
    Wang, Chongze
    Yi, Seho
    Cho, Jun-Hyung
    PHYSICAL REVIEW B, 2020, 101 (10)
  • [5] Optimal alloying in hydrides: Reaching room-temperature superconductivity in LaH10
    Wang, Tianchun
    Flores-Livas, Jose A.
    Nomoto, Takuya
    Ma, Yanming
    Koretsune, Takashi
    Arita, Ryotaro
    PHYSICAL REVIEW B, 2022, 105 (17)
  • [6] High-temperature superconductivity in LaH10
    Papaconstantopoulos, D. A.
    Mehl, M. J.
    Chang, P-H
    PHYSICAL REVIEW B, 2020, 101 (06)
  • [7] Superconductivity of LaH10 and LaH16 polyhydrides
    Kruglov, Ivan A.
    Semenok, Dmitrii, V
    Song, Hao
    Szczesniak, Radoslaw
    Wrona, Izabela A.
    Akashi, Ryosuke
    Esfahani, M. Mahdi Davari
    Duan, Defang
    Cui, Tian
    Kvashnin, Alexander G.
    Oganov, Artem R.
    PHYSICAL REVIEW B, 2020, 101 (02)
  • [8] Investigation of the gap-to-Tc ratio of LaH10 and LaD10 superconductors
    Ruangrungrote, S.
    Chanpoom, T.
    Thaninworapak, R.
    Udomsamuthirun, P.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (23):
  • [9] Pressure dependence of the superconducting transition temperature of compressed LaH10
    Wang, Chongze
    Yi, Seho
    Cho, Jun-Hyung
    PHYSICAL REVIEW B, 2019, 100 (06)
  • [10] Superionicity of Hδ- in LaH10 superhydride
    Causse, Maelie
    Geneste, Gregory
    Loubeyre, Paul
    PHYSICAL REVIEW B, 2023, 107 (06)