A convolutional neural network model for marble quality classification

被引:0
|
作者
İdris Karaali
Mete Eminağaoğlu
机构
[1] Dokuz Eylül University,Department of Computer Science
来源
SN Applied Sciences | 2020年 / 2卷
关键词
Convolutional neural networks; Marble images; Marble quality classification; Machine learning; Data augmentation;
D O I
暂无
中图分类号
学科分类号
摘要
The fundamental policy of marble industries is to establish sustainable high-quality products in a standardized manner. Identification and classification of different types of marbles is a critical task that is usually carried out by human experts. However, marble quality classification by humans can be time-consuming, error-prone, inconsistent, and subjective. Automated and computerized approaches are required to obtain faster, more reliable, and less subjective results. In this study, a deep learning model is developed to perform multi-classification of marble slab images with six different quality types. Blur filter, 5 ✕ 5 low-pass 2D linear separable convolution filter using Gaussian kernel, and erosion filter were applied to the images for data augmentation, and a special convolutional neural network (CNN) architecture was designed and implemented. It has been observed that the data augmentation approach for marble image samples has significantly improved the accuracy of the CNN model ranging between 0.922 and 0.961.
引用
收藏
相关论文
共 50 条
  • [41] Shallow convolutional neural network for image classification
    Fangyuan Lei
    Xun Liu
    Qingyun Dai
    Bingo Wing-Kuen Ling
    SN Applied Sciences, 2020, 2
  • [42] Convolutional Neural Network for Classification of Source Codes
    Ohashi, Hiroki
    Watanobe, Yutaka
    2019 IEEE 13TH INTERNATIONAL SYMPOSIUM ON EMBEDDED MULTICORE/MANY-CORE SYSTEMS-ON-CHIP (MCSOC 2019), 2019, : 194 - 200
  • [43] Water Classification Using Convolutional Neural Network
    Asghar, Saira
    Gilanie, Ghulam
    Saddique, Mubbashar
    Ullah, Hafeez
    Mohamed, Heba G.
    Abbasi, Irshad Ahmed
    Abbas, Mohamed
    IEEE ACCESS, 2023, 11 : 78601 - 78612
  • [44] Leaf Classification Utilizing a Convolutional Neural Network
    Jassmann, Timothy J.
    Tashakkori, Rahman
    Parry, R. Mitchell
    IEEE SOUTHEASTCON 2015, 2015,
  • [45] Simple Convolutional Neural Network on Image Classification
    Guo, Tianmei
    Dong, Jiwen
    Li, Henjian
    Gao, Yunxing
    2017 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), 2017, : 721 - 724
  • [46] A Convolutional Attentional Neural Network for Sentiment Classification
    Du, Jiachen
    Gui, Lin
    He, Yulan
    Xu, Ruifeng
    2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2017, : 445 - 450
  • [47] Review of Convolutional Neural Network in Video Classification
    Talreja, Gaurav
    Mathew, Rejo
    PROCEEDING OF THE INTERNATIONAL CONFERENCE ON COMPUTER NETWORKS, BIG DATA AND IOT (ICCBI-2018), 2020, 31 : 942 - 947
  • [48] Convolutional Neural Network for Industrial Egg Classification
    Shimizu, Ryota
    Yanagawa, Shusuke
    Shimizu, Toru
    Hamada, Mototsugu
    Kuroda, Tadahiro
    PROCEEDINGS INTERNATIONAL SOC DESIGN CONFERENCE 2017 (ISOCC 2017), 2017, : 67 - 68
  • [49] A Hierarchical Convolutional Neural Network for Malware Classification
    Gibert, Daniel
    Mateu, Carles
    Planes, Jordi
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [50] Pretraining for Hyperspectral Convolutional Neural Network Classification
    Windrim, Lloyd
    Melkumyan, Arman
    Murphy, Richard J.
    Chlingaryan, Anna
    Ramakrishnan, Rishi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (05): : 2798 - 2810