A convolutional neural network model for marble quality classification

被引:0
|
作者
İdris Karaali
Mete Eminağaoğlu
机构
[1] Dokuz Eylül University,Department of Computer Science
来源
SN Applied Sciences | 2020年 / 2卷
关键词
Convolutional neural networks; Marble images; Marble quality classification; Machine learning; Data augmentation;
D O I
暂无
中图分类号
学科分类号
摘要
The fundamental policy of marble industries is to establish sustainable high-quality products in a standardized manner. Identification and classification of different types of marbles is a critical task that is usually carried out by human experts. However, marble quality classification by humans can be time-consuming, error-prone, inconsistent, and subjective. Automated and computerized approaches are required to obtain faster, more reliable, and less subjective results. In this study, a deep learning model is developed to perform multi-classification of marble slab images with six different quality types. Blur filter, 5 ✕ 5 low-pass 2D linear separable convolution filter using Gaussian kernel, and erosion filter were applied to the images for data augmentation, and a special convolutional neural network (CNN) architecture was designed and implemented. It has been observed that the data augmentation approach for marble image samples has significantly improved the accuracy of the CNN model ranging between 0.922 and 0.961.
引用
收藏
相关论文
共 50 条
  • [31] Arrhythmia classification algorithm based on convolutional neural network hybrid model
    Xiong H.
    Liang M.
    Liu J.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2021, 53 (02): : 33 - 39
  • [32] A Novel Convolutional Neural Network Model for Malaria Cell Images Classification
    Hassan, Esraa
    Shams, Mahmoud Y.
    Hikal, Noha A.
    Elmougy, Samir
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (03): : 5889 - 5907
  • [33] Cedarwood Quality Classification using SVM Classifier and Convolutional Neural Network (CNN)
    Murti, Muhammad Ary
    Setianingsih, Casi
    Kusumawardhani, Eka
    Farhan, Renal
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (11) : 101 - 111
  • [34] Classification of plug seedling quality by improved convolutional neural network with an attention mechanism
    Du, Xinwu
    Si, Laiqiang
    Jin, Xin
    Li, Pengfei
    Yun, Zhihao
    Gao, Kaihang
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [35] Classification varieties of marble and granite by convolutional neural networks with transfer learning method
    Elmas, Bahadir
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2022, 37 (02): : 985 - 1001
  • [36] A Convolutional Neural Network and Graph Convolutional Network Based Framework for AD Classification
    Lin, Lan
    Xiong, Min
    Zhang, Ge
    Kang, Wenjie
    Sun, Shen
    Wu, Shuicai
    SENSORS, 2023, 23 (04)
  • [37] SCONE: Supernova Classification with a Convolutional Neural Network
    Qu, Helen
    Sako, Masao
    Moller, Anais
    Doux, Cyrille
    ASTRONOMICAL JOURNAL, 2021, 162 (02):
  • [38] Encrypted Application Classification with Convolutional Neural Network
    Yang, Kun
    Xu, Lu
    Xu, Yang
    Chao, Jonathan
    2020 IFIP NETWORKING CONFERENCE AND WORKSHOPS (NETWORKING), 2020, : 499 - 503
  • [39] A Convolutional Fuzzy Neural Network for Image Classification
    Korshunova, Kseniya P.
    PROCEEDINGS OF THE 2018 3RD RUSSIAN-PACIFIC CONFERENCE ON COMPUTER TECHNOLOGY AND APPLICATIONS (RPC), 2018,
  • [40] A Quantum Convolutional Neural Network for Image Classification
    Lu, Yanxuan
    Gao, Qing
    Lu, Jinhu
    Ogorzalek, Maciej
    Zheng, Jin
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 6329 - 6334