SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM

被引:0
|
作者
Thorsten Wagner
Felipe Merino
Markus Stabrin
Toshio Moriya
Claudia Antoni
Amir Apelbaum
Philine Hagel
Oleg Sitsel
Tobias Raisch
Daniel Prumbaum
Dennis Quentin
Daniel Roderer
Sebastian Tacke
Birte Siebolds
Evelyn Schubert
Tanvir R. Shaikh
Pascal Lill
Christos Gatsogiannis
Stefan Raunser
机构
[1] Max Planck Institute of Molecular Physiology,Department of Structural Biochemistry
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Selecting particles from digital micrographs is an essential step in single-particle electron cryomicroscopy (cryo-EM). As manual selection of complete datasets—typically comprising thousands of particles—is a tedious and time-consuming process, numerous automatic particle pickers have been developed. However, non-ideal datasets pose a challenge to particle picking. Here we present the particle picking software crYOLO which is based on the deep-learning object detection system You Only Look Once (YOLO). After training the network with 200–2500 particles per dataset it automatically recognizes particles with high recall and precision while reaching a speed of up to five micrographs per second. Further, we present a general crYOLO network able to pick from previously unseen datasets, allowing for completely automated on-the-fly cryo-EM data preprocessing during data acquisition. crYOLO is available as a standalone program under http://sphire.mpg.de/ and is distributed as part of the image processing workflow in SPHIRE.
引用
收藏
相关论文
共 50 条
  • [11] APPLE picker: Automatic particle picking, a low-effort cryo-EM framework
    Heimowitz, Ayelet
    Anden, Joakim
    Singer, Amit
    JOURNAL OF STRUCTURAL BIOLOGY, 2018, 204 (02) : 215 - 227
  • [12] EMHP: an accurate automated hole masking algorithm for single-particle cryo-EM image processing
    Berndsen, Zachary
    Bowman, Charles
    Jang, Haerin
    Ward, Andrew B.
    BIOINFORMATICS, 2017, 33 (23) : 3824 - 3826
  • [13] Fast and accurate defocus modulation for improved tunability of cryo-EM experiments
    Danev, Radostin
    Iijima, Hirofumi
    Matsuzaki, Mizuki
    Motoki, Sohei
    IUCRJ, 2020, 7 : 566 - 574
  • [14] Fast multiscale reconstruction for Cryo-EM
    Donati, Laurene
    Nilchian, Masih
    Sorzano, Carlos Oscar S.
    Unser, Michael
    JOURNAL OF STRUCTURAL BIOLOGY, 2018, 204 (03) : 543 - 554
  • [15] Automated atomic modeling in cryo-EM maps
    Singh, Arunima
    NATURE METHODS, 2024, 21 (05) : 749 - 749
  • [17] FAST WAVELET-BASED SINGLE-PARTICLE RECONSTRUCTION IN CRYO-EM
    Vonesch, Cedric
    Wang, Lanhui
    Shkolnisky, Yoel
    Singer, Amit
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 1950 - 1953
  • [18] A Fast Iterative Shrinkage Thresholding Algorithm for Single Particle Reconstruction of Cryo-EM
    Pan, Huan
    You Wei-Wen
    Zeng, Tieyong
    2018 IEEE 3RD INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC), 2018, : 342 - 346
  • [19] Cryo-EM Structure of a Begomovirus Geminate Particle
    Xu, Xiongbiao
    Zhang, Qing
    Hong, Jian
    Li, Zhenghe
    Zhang, Xiaokang
    Zhou, Xueping
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (07)
  • [20] Cryo-EM structure of the fully assembled Elongator complex
    Jaciuk, Marcin
    Scherf, David
    Kaszuba, Karol
    Gaik, Monika
    Rau, Alexander
    Koscielniak, Anna
    Krutyholowa, Roscislaw
    Rawski, Michal
    Indyka, Paulina
    Graziadei, Andrea
    Chramiec-Glabik, Andrzej
    Biela, Anna
    Dobosz, Dominika
    Lin, Ting-Yu
    Abbassi, Nour-el-Hana
    Hammermeister, Alexander
    Rappsilber, Juri
    Kosinski, Jan
    Schaffrath, Raffael
    Glatt, Sebastian
    NUCLEIC ACIDS RESEARCH, 2023, 51 (05) : 2011 - 2032