On characterization of being a generalized Fibonacci Q-matrix of linear combinations of two generalized Fibonacci Q-matrices

被引:0
|
作者
A. Öndül
T. Demirkol
H. Özdemir
机构
[1] Sakarya University,Department of Mathematics
来源
Afrika Matematika | 2024年 / 35卷
关键词
Fibonacci numbers; Fibonacci ; -matrix; Generalized Fibonacci numbers; Linear combination; Matrix equations; 15A15; 15A16; 15A24; 11B39; 11Y55;
D O I
暂无
中图分类号
学科分类号
摘要
It is given a characterization of being a matrix Qg(a3,b3)(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{g({a_3},{b_3})}^{(k)}$$\end{document} of linear combination of a matrix Qg(a1,b1)(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{g({a_1},{b_1})}^{(n)}$$\end{document} and a matrix Qg(a2,b2)(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{g({a_2},{b_2})}^{(m)}$$\end{document}, where ai,bi∈R∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{i}, b_{i} \in \mathbb {R}^{*}$$\end{document}, i=1,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1, 2, 3$$\end{document}, m,n,k∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m, n, k \in \mathbb {Z}$$\end{document}, and Qg(a,b)(l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{g({a},{b})}^{(l)}$$\end{document} denotes an (a, b)-generalized Fibonacci Q-matrix with l∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l\in \mathbb {Z}$$\end{document}. In addition, some examples are presented illustrating the main result. Finally, some applications of the main result obtained are given.
引用
收藏
相关论文
共 46 条
  • [41] ZWNet: DarkNet53-based zero watermarking method for authentication of medical images inspired by Fibonacci Q-matrix and stationary wavelet transform
    Abdel-Aziz, Mostafa M.
    Lashin, Nabil A.
    Hamza, Hanaa M.
    Hosny, Khalid M.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [42] A Family of Bi-Univalent Functions Defined by (p, q)-Derivative Operator Subordinate to a Generalized Bivariate Fibonacci Polynomials
    Frasin, Basem Aref
    Swamy, Sondekola Rudra
    Amourah, Ala
    Salah, Jamal
    Maheshwarappa, Ranjitha Hebbar
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (04): : 3801 - 3814
  • [43] A highly robust and secure digital image watermarking using modified optimal foraging algorithm-based SVM classifier and hyperchaotic Fibonacci Q-matrix
    Gupta, Megha
    Kishore, R. Rama
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (07): : 2079 - 2090
  • [44] Iterative Algorithm for Solving a Class of Quaternion Matrix Equation over the Generalized (P, Q)-Reflexive Matrices
    Li, Ning
    Wang, Qing-Wen
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [45] A finite iterative algorithm for solving the generalized (P, Q)-reflexive solution of the linear systems of matrix equations
    Wang, Xiang
    Wu, Wuhua
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (9-10) : 2117 - 2131
  • [46] Solving the Generalized Sylvester Matrix Equation Σi=1pAiXBi + Σi=1q CjYDj = E Over Reflexive and Anti-reflexive Matrices
    Dehghan, Mehdi
    Hajarian, Masoud
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2011, 9 (01) : 118 - 124