A Family of Bi-Univalent Functions Defined by (p, q)-Derivative Operator Subordinate to a Generalized Bivariate Fibonacci Polynomials

被引:0
|
作者
Frasin, Basem Aref [1 ,2 ]
Swamy, Sondekola Rudra [3 ]
Amourah, Ala [4 ,5 ]
Salah, Jamal [6 ]
Maheshwarappa, Ranjitha Hebbar [2 ]
机构
[1] Al Al Bayt Univ, Fac Sci, Dept Math, Mafraq, Jordan
[2] Jadara Univ, Jadara Res Ctr, Irbid 21110, Jordan
[3] Acharya Inst Technol, Dept Informat Sci & Engn, Bengaluru 560107, Karnataka, India
[4] Sohar Univ, Fac Educ & Arts, Math Educ Program, Sohar, Oman
[5] Appl Sci Private Univ, Amman, Jordan
[6] ASharqiyah Univ, Coll Appl & Hlth Sci, Post Box 42, Ibra 400, Oman
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2024年 / 17卷 / 04期
关键词
(p; q)-derivative operator; Regular function; Fekete- Szego functional; Bi-univalent function; Bivariate Fibonacci Polynomials; SUBCLASSES;
D O I
10.29020/nybg.ejpam.v17i4.5526
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Making use of a generalized bivariate Fibonacci polynomials, we propose a family of normalized regular functions psi(zeta) = c + d(2)zeta(2) + d(3)zeta(3) + <middle dot> <middle dot> <middle dot>, which are bi-univalent in the disc {zeta E C : zeta < 1} involving (p, q)-derivative operator. We find estimates on the coefficients d(2) , d(3) and the Fekete-Szego inequality for members of this family. New implications of the primary result as well as pertinent links to previously published findings are also provided.
引用
收藏
页码:3801 / 3814
页数:14
相关论文
共 50 条
  • [1] A Subclass of Bi-univalent Functions Defined by a Symmetric q-Derivative Operator and Gegenbauer Polynomials
    Illafe, Mohamed
    Mohd, Maisarah Haji
    Yousef, Feras
    Supramaniam, Shamani
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (04): : 2467 - 2480
  • [2] On some new subclasses of bi-univalent functions defined by generalized Bivariate Fibonacci polynomial
    Yilmaz, Nazmiye
    Aktas, Ibrahim
    AFRIKA MATEMATIKA, 2022, 33 (02)
  • [3] On some new subclasses of bi-univalent functions defined by generalized Bivariate Fibonacci polynomial
    Nazmiye Yilmaz
    İbrahim Aktaş
    Afrika Matematika, 2022, 33
  • [4] Applications Laguerre Polynomials for Families of Bi-Univalent Functions Defined with ( p, q)-Wanas Operator
    Wanas, Abbas Kareem
    Sakar, Fethiye Muge
    Alb Lupas, Alina
    AXIOMS, 2023, 12 (05)
  • [5] HORADAM POLYNOMIALS FOR A NEW SUBCLASS OF SAKAGUCHI-TYPE BI-UNIVALENT FUNCTIONS DEFINED BY (p, q)-DERIVATIVE OPERATOR
    Balasubramaniam, Vanithakumari
    Gunasekar, Saravanan
    Sudharsanan, Baskaran
    Yalcin, Sibel
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 39 (02): : 461 - 470
  • [6] NEW SUBCLASS OF BI-UNIVALENT FUNCTIONS BY (p, q)-DERIVATIVE OPERATOR
    Motamednezhad, Ahmad
    Salehian, Safa
    HONAM MATHEMATICAL JOURNAL, 2019, 41 (02): : 381 - 390
  • [7] Correction to: On some new subclasses of bi-univalent functions defined by generalized Bivariate Fibonacci polynomial
    Nazmiye Yilmaz
    İbrahim Aktaş
    Afrika Matematika, 2022, 33
  • [8] On a subclass of the analytic and bi-univalent functions satisfying subordinate condition defined by q-derivative
    Mustafa, Nizami
    Korkmaz, Semra
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (08) : 3095 - 3120
  • [9] Coefficient Estimates for a Subclass of Bi-Univalent Functions Defined by q-Derivative Operator
    Elhaddad, Suhila
    Darus, Maslina
    MATHEMATICS, 2020, 8 (03)
  • [10] Certain Subclasses of Bi-Univalent Functions Defined by (p, q)-Differential Operator
    Rmsen, A. A. A.
    Shivarudrappa, H. L.
    Ravikumar, N.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (04): : 745 - 753