A new local projection stabilization virtual element method for the Oseen problem on polygonal meshes

被引:0
|
作者
Yang Li
Minfu Feng
Yan Luo
机构
[1] Sichuan University,College of Mathematics
[2] University of Electronic Science and Technology of China,School of Mathematical Sciences
来源
关键词
Oseen problem; Virtual element method; Local projection stabilization; Convective-dominated flows; 35;
D O I
暂无
中图分类号
学科分类号
摘要
For the Oseen problem, we present a new stabilized virtual element method on polygonal meshes that allows us to employ “equal-order” virtual element pairs to approximate both velocity and pressure. By introducing the local projection type stabilization terms to the virtual element method, the method can not only circumvent the discrete Babuška-Brezzi condition, but also maintain the favorable stability and approximation properties of residual-based stabilization methods. In particular, it does not need to calculate complex high-order derivative terms and avoids the strong coupling terms of velocity and pressure. Error estimates are obtained without depending on the inverse of the viscosity, which means that the method is effective in the convective-dominated regime. Some numerical experiments are performed to verify the method has good behaviors.
引用
收藏
相关论文
共 50 条
  • [1] A new local projection stabilization virtual element method for the Oseen problem on polygonal meshes
    Li, Yang
    Feng, Minfu
    Luo, Yan
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (03)
  • [2] A LEAST-SQUARES STABILIZATION VIRTUAL ELEMENT METHOD FOR THE STOKES PROBLEM ON POLYGONAL MESHES
    Li, Yang
    Hu, Chaolang
    Feng, Minfu
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (05) : 685 - 708
  • [3] Local projection stabilization for the Oseen problem
    Dallmann, Helene
    Arndt, Daniel
    Lube, Gert
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (02) : 796 - 823
  • [4] A MIXED VIRTUAL ELEMENT METHOD FOR THE BOUSSINESQ PROBLEM ON POLYGONAL MESHES
    Gatica, Gabriel N.
    Munar, Mauricio
    Sequeira, Filander A.
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (03): : 392 - 427
  • [5] Local Projection Stabilization for the Oseen System on Anisotropic Cartesian Meshes
    Braack, M.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 441 - 448
  • [6] Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method
    Braack, M
    Burman, E
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 43 (06) : 2544 - 2566
  • [7] Virtual element method for a nonlocal elliptic problem of Kirchhoff type on polygonal meshes
    Adak, D.
    Natarajan, S.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (10) : 2856 - 2871
  • [8] A STREAM VIRTUAL ELEMENT FORMULATION OF THE STOKES PROBLEM ON POLYGONAL MESHES
    Antonietti, P. F.
    da Veiga, L. Beirao
    Mora, D.
    Verani, M.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) : 386 - 404
  • [9] A local projection stabilised HHO method for the Oseen problem
    Mallik, Gouranga
    Biswas, Rahul
    Gudi, Thirupathi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 176 : 202 - 220
  • [10] Virtual element method for nonlinear Sobolev equation on polygonal meshes
    Liu, Wanxiang
    Chen, Yanping
    Gu, Qiling
    Huang, Yunqing
    NUMERICAL ALGORITHMS, 2023, 94 (04) : 1731 - 1761