Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method

被引:197
|
作者
Braack, M
Burman, E
机构
[1] Heidelberg Univ, Inst Appl Math, D-69120 Heidelberg, Germany
[2] Ecole Polytech Fed Lausanne, Inst Anal Modelling & Sci Comp, CH-1015 Lausanne, Switzerland
关键词
stabilized finite elements; Galerkin methods; multiscale;
D O I
10.1137/050631227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose to apply the recently introduced local projection stabilization to the numerical computation of the Oseen equation at high Reynolds number. The discretization is done by nested finite element spaces. Using a priori error estimation techniques, we prove the convergence of the method. The a priori estimates are independent of the local Peclet number and give a sufficient condition for the size of the stabilization parameters in order to ensure optimality of the approximation when the exact solution is smooth. Moreover, we show how this method may be cast in the framework of variational multiscale methods. We indicate what modeling assumptions must be made to use the method for large eddy simulations.
引用
收藏
页码:2544 / 2566
页数:23
相关论文
共 50 条
  • [1] Local projection stabilization for the Oseen problem
    Dallmann, Helene
    Arndt, Daniel
    Lube, Gert
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (02) : 796 - 823
  • [2] A variational multiscale method with bubble stabilization for the Oseen problem based on two local Gauss integrations
    Zheng, Haibiao
    Yu, Jiaping
    Li, Kaitai
    Shi, Feng
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (08) : 3701 - 3708
  • [3] A new local projection stabilization virtual element method for the Oseen problem on polygonal meshes
    Yang Li
    Minfu Feng
    Yan Luo
    Advances in Computational Mathematics, 2022, 48
  • [4] A new local projection stabilization virtual element method for the Oseen problem on polygonal meshes
    Li, Yang
    Feng, Minfu
    Luo, Yan
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (03)
  • [5] A local projection stabilised HHO method for the Oseen problem
    Mallik, Gouranga
    Biswas, Rahul
    Gudi, Thirupathi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 176 : 202 - 220
  • [6] Nonconforming local projection stabilization for generalized Oseen equations
    Yan-hong Bai
    Min-fu Feng
    Chuan-long Wang
    Applied Mathematics and Mechanics, 2010, 31 : 1439 - 1452
  • [7] Nonconforming local projection stabilization for generalized Oseen equations
    Bai, Yan-hong
    Feng, Min-fu
    Wang, Chuan-long
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (11) : 1439 - 1452
  • [8] Nonconforming local projection stabilization for generalized Oseen equations
    白艳红
    冯民富
    王川龙
    Applied Mathematics and Mechanics(English Edition), 2010, 31 (11) : 1439 - 1452
  • [9] A residual local projection method for the Oseen equation
    Barrenechea, Gabriel R.
    Valentin, Frederic
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (29-32) : 1906 - 1921
  • [10] Beyond pressure stabilization: A low-order local projection method for the Oseen equation
    Barrenechea, Gabriel R.
    Valentin, Frederic
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 86 (07) : 801 - 815