Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method

被引:197
|
作者
Braack, M
Burman, E
机构
[1] Heidelberg Univ, Inst Appl Math, D-69120 Heidelberg, Germany
[2] Ecole Polytech Fed Lausanne, Inst Anal Modelling & Sci Comp, CH-1015 Lausanne, Switzerland
关键词
stabilized finite elements; Galerkin methods; multiscale;
D O I
10.1137/050631227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose to apply the recently introduced local projection stabilization to the numerical computation of the Oseen equation at high Reynolds number. The discretization is done by nested finite element spaces. Using a priori error estimation techniques, we prove the convergence of the method. The a priori estimates are independent of the local Peclet number and give a sufficient condition for the size of the stabilization parameters in order to ensure optimality of the approximation when the exact solution is smooth. Moreover, we show how this method may be cast in the framework of variational multiscale methods. We indicate what modeling assumptions must be made to use the method for large eddy simulations.
引用
收藏
页码:2544 / 2566
页数:23
相关论文
共 50 条
  • [41] A High-Order Local Projection Stabilization Method for Natural Convection Problems
    Tomás Chacón Rebollo
    Macarena Gómez Mármol
    Frédéric Hecht
    Samuele Rubino
    Isabel Sánchez Muñoz
    Journal of Scientific Computing, 2018, 74 : 667 - 692
  • [42] A local projection stabilization of fictitious domain method for elliptic boundary value problems
    Amdouni, S.
    Moakher, M.
    Renard, Y.
    APPLIED NUMERICAL MATHEMATICS, 2014, 76 : 60 - 75
  • [43] A High-Order Local Projection Stabilization Method for Natural Convection Problems
    Chacon Rebollo, Tomas
    Gomez Marmol, Macarena
    Hecht, Frederic
    Rubino, Samuele
    Sanchez Munoz, Isabel
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (02) : 667 - 692
  • [44] Finite element error analysis for a projection-based variational multiscale method with nonlinear eddy viscosity
    John, V.
    Kaya, S.
    Kindl, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) : 627 - 641
  • [45] Inertial split projection and contraction method for pseudomonotone variational inequality problem in Banach spaces
    Maluleka, Rose
    Ugwunnadi, G. C.
    Aphane, M.
    Abass, H. A.
    Khan, A. R.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2024, 40 (01) : 99 - 120
  • [46] The partition-of-unity method for linear diffusion and convection problems: accuracy, stabilization and multiscale interpretation
    Munts, EA
    Hulshoff, SJ
    de Borst, R
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2003, 43 (02) : 199 - 213
  • [47] Local Projection FEM Stabilization for the Time-Dependent Incompressible Navier-Stokes Problem
    Arndt, Daniel
    Dallmann, Helene
    Lube, Gert
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (04) : 1224 - 1250
  • [48] A local projection stabilization virtual element method for convection-diffusion-reaction equation
    Li, Yang
    Feng, Minfu
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 411
  • [49] A local projection stabilization/continuous Galerkin-Petrov method for incompressible flow problems
    Ahmed, Naveed
    John, Volker
    Matthies, Gunar
    Novo, Julia
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 333 : 304 - 324
  • [50] Fault Diagnosis of Rotating Machinery Based on the Multiscale Local Projection Method and Diagonal Slice Spectrum
    Lv, Yong
    Yuan, Rui
    Shi, Wei
    APPLIED SCIENCES-BASEL, 2018, 8 (04):