A new local projection stabilization virtual element method for the Oseen problem on polygonal meshes

被引:0
|
作者
Yang Li
Minfu Feng
Yan Luo
机构
[1] Sichuan University,College of Mathematics
[2] University of Electronic Science and Technology of China,School of Mathematical Sciences
来源
关键词
Oseen problem; Virtual element method; Local projection stabilization; Convective-dominated flows; 35;
D O I
暂无
中图分类号
学科分类号
摘要
For the Oseen problem, we present a new stabilized virtual element method on polygonal meshes that allows us to employ “equal-order” virtual element pairs to approximate both velocity and pressure. By introducing the local projection type stabilization terms to the virtual element method, the method can not only circumvent the discrete Babuška-Brezzi condition, but also maintain the favorable stability and approximation properties of residual-based stabilization methods. In particular, it does not need to calculate complex high-order derivative terms and avoids the strong coupling terms of velocity and pressure. Error estimates are obtained without depending on the inverse of the viscosity, which means that the method is effective in the convective-dominated regime. Some numerical experiments are performed to verify the method has good behaviors.
引用
收藏
相关论文
共 50 条
  • [41] A noncoforming virtual element approximation for the Oseen eigenvalue problem
    Adak, Dibyendu
    Lepe, Felipe
    Rivera, Gonzalo
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2025,
  • [42] On the stabilization of a virtual element method for an acoustic vibration problem
    Alzaben, Linda
    Boffi, Daniele
    Dedner, Andreas
    Gastaldi, Lucia
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2025, 35 (03): : 655 - 701
  • [43] Virtual element discretization method to optimal control problem governed by Stokes equations with pointwise control constraint on arbitrary polygonal meshes
    Li, Yanwei
    Liu, Huipo
    Zhou, Zhaojie
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 450
  • [44] Local projection stabilization virtual element method for the convection-diffusion equation with nonlinear reaction term
    Mishra, Sudheer
    Natarajan, E.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 152 : 181 - 198
  • [45] DIVERGENCE FREE VIRTUAL ELEMENTS FOR THE STOKES PROBLEM ON POLYGONAL MESHES
    da Veiga, Lourenco Beirao
    Lovadina, Carlo
    Vacca, Giuseppe
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (02): : 509 - 535
  • [46] VIRTUAL ELEMENTS FOR THE NAVIER-STOKES PROBLEM ON POLYGONAL MESHES
    da Veiga, L. Beirao
    Lovadina, C.
    Vacca, G.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (03) : 1210 - 1242
  • [47] A new streamline diffusion finite element method for the generalized Oseen problem
    Chao Xu
    Dongyang Shi
    Xin Liao
    Applied Mathematics and Mechanics, 2018, 39 : 291 - 304
  • [48] A new streamline diffusion finite element method for the generalized Oseen problem
    Xu, Chao
    Shi, Dongyang
    Liao, Xin
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2018, 39 (02) : 291 - 304
  • [49] Mixed finite element method on polygonal and polyhedral meshes
    Kuznetsov, Y
    Repin, S
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 615 - 622
  • [50] A new streamline diffusion finite element method for the generalized Oseen problem
    Chao XU
    Dongyang SHI
    Xin LIAO
    Applied Mathematics and Mechanics(English Edition), 2018, 39 (02) : 291 - 304