Non uniform random generation of generalized Motzkin paths

被引:0
|
作者
Srečko Brlek
Elisa Pergola
Olivier Roques
机构
[1] Un. Québec à Montréal,LaCIM, Département d'informatique
[2] Un. di Firenze,Dipartimento di Sistemi e Informatica
[3] Université Bordeaux 1,LaBRI
来源
Acta Informatica | 2006年 / 42卷
关键词
Generalized Motzkin path; Random generation; Rejection;
D O I
暂无
中图分类号
学科分类号
摘要
We consider in this paper the class Mkn of generalized Motzkin paths of length n, that is, lattice paths using steps (1,1), (1,−1), (k,0), where k is a fixed positive integer, starting at the origin (0,0), running above the x-axis, and ending at (n,0). The area is the region bounded by the path and the x-axis. We first establish a bijection between the area of paths in Mkn and some lattice paths of length n+1. Then, by using a rejection technique, we obtain a linear algorithm with an average time complexity (k mod 2 +1)(n+1).
引用
收藏
页码:603 / 616
页数:13
相关论文
共 50 条
  • [11] Some Statistics on Generalized Motzkin Paths with Vertical Steps
    Yidong Sun
    Di Zhao
    Weichen Wang
    Wenle Shi
    Graphs and Combinatorics, 2022, 38
  • [12] GENERALIZED FROBENIUS PARTITIONS, MOTZKIN PATHS, AND JACOBI FORMS
    Jiang, Yuze
    Rolen, Larry
    Woodbury, Michael
    arXiv, 2021,
  • [13] Combinatorial matrices derived from generalized Motzkin paths
    Lin Yang
    Sheng-Liang Yang
    Indian Journal of Pure and Applied Mathematics, 2021, 52 : 599 - 613
  • [14] Combinatorial matrices derived from generalized Motzkin paths
    Yang, Lin
    Yang, Sheng-Liang
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (02): : 599 - 613
  • [15] Some Statistics on Generalized Motzkin Paths with Vertical Steps
    Sun, Yidong
    Zhao, Di
    Wang, Weichen
    Shi, Wenle
    GRAPHS AND COMBINATORICS, 2022, 38 (06)
  • [16] Limits of Random Motzkin Paths with KPZ Related Asymptotics
    Bryc, Wlodzimierz
    Kuznetsov, Alexey
    Wesolowski, Jacek
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2025, 2025 (05)
  • [17] Some enumerations on non-decreasing Motzkin paths
    Florez, Rigoberto
    Ramirez, Jose L.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2018, 72 : 138 - 154
  • [18] Motzkin paths, Motzkin polynomials and recurrence relations
    Oste, Roy
    Van der Jeugt, Joris
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (02):
  • [19] Skew Motzkin Paths
    Qing Lin LU
    Acta Mathematica Sinica, 2017, 33 (05) : 657 - 667
  • [20] Special Motzkin paths
    You, SP
    AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (05): : 478 - 479