Non uniform random generation of generalized Motzkin paths

被引:0
|
作者
Srečko Brlek
Elisa Pergola
Olivier Roques
机构
[1] Un. Québec à Montréal,LaCIM, Département d'informatique
[2] Un. di Firenze,Dipartimento di Sistemi e Informatica
[3] Université Bordeaux 1,LaBRI
来源
Acta Informatica | 2006年 / 42卷
关键词
Generalized Motzkin path; Random generation; Rejection;
D O I
暂无
中图分类号
学科分类号
摘要
We consider in this paper the class Mkn of generalized Motzkin paths of length n, that is, lattice paths using steps (1,1), (1,−1), (k,0), where k is a fixed positive integer, starting at the origin (0,0), running above the x-axis, and ending at (n,0). The area is the region bounded by the path and the x-axis. We first establish a bijection between the area of paths in Mkn and some lattice paths of length n+1. Then, by using a rejection technique, we obtain a linear algorithm with an average time complexity (k mod 2 +1)(n+1).
引用
收藏
页码:603 / 616
页数:13
相关论文
共 50 条
  • [1] Non uniform random generation of generalized Motzkin paths
    Brlek, S
    Pergola, E
    Roques, O
    ACTA INFORMATICA, 2006, 42 (8-9) : 603 - 616
  • [2] Fluctuations of random Motzkin paths
    Bryc, Wlodzimierz
    Wang, Yizao
    ADVANCES IN APPLIED MATHEMATICS, 2019, 106 : 96 - 116
  • [3] Fluctuations of random Motzkin paths II
    Bryc, Wlodzimierz
    Wang, Yizao
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 21 : 73 - 94
  • [4] Combinatorics of generalized Dyck and Motzkin paths
    Gan, Li
    Ouvry, Stephane
    Polychronakos, Alexios P.
    PHYSICAL REVIEW E, 2022, 106 (04)
  • [5] UNIFORM GENERATION OF A MOTZKIN WORD
    ALONSO, L
    THEORETICAL COMPUTER SCIENCE, 1994, 134 (02) : 529 - 536
  • [6] THE PASCAL RHOMBUS AND THE GENERALIZED GRAND MOTZKIN PATHS
    Ramirez, Jose L.
    FIBONACCI QUARTERLY, 2016, 54 (02): : 99 - 104
  • [7] Counting humps and peaks in generalized Motzkin paths
    Mansour, Toufik
    Shattuck, Mark
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 2213 - 2216
  • [8] A bijective approach to the area of generalized Motzkin paths
    Pergola, E
    Pinzani, R
    Rinaldi, S
    Sulanke, RA
    ADVANCES IN APPLIED MATHEMATICS, 2002, 28 (3-4) : 580 - 591
  • [9] Generalized Frobenius partitions, Motzkin paths, and Jacobi forms
    Jiang, Yuze
    Rolen, Larry
    Woodbury, Michael
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2022, 190
  • [10] Limit theorems for random Motzkin paths near boundary
    Bryc, Wlodzimierz
    Wang, Yizao
    BERNOULLI, 2024, 30 (03) : 2185 - 2206