In this article, we show that, for a biharmonic hypersurface (M, g) of a Riemannian manifold (N, h) of non-positive Ricci curvature, if \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\int_M\vert H\vert^2 v_g<\infty}$$\end{document}, where H is the mean curvature of (M, g) in (N, h), then (M, g) is minimal in (N, h). Thus, for a counter example (M, g) in the case of hypersurfaces to the generalized Chen’s conjecture (cf. Sect. 1), it holds that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\int_M\vert H\vert^2 v_g=\infty}$$\end{document} .