Biharmonic hypersurfaces in a Riemannian manifold with non-positive Ricci curvature

被引:0
|
作者
Nobumitsu Nakauchi
Hajime Urakawa
机构
[1] Yamaguchi University,Graduate School of Science and Engineering
[2] Tohoku University,Institute for International Education
来源
关键词
Harmonic map; Biharmonic map; Isometric immersion; Minimal; Ricci curvature; 58E20;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we show that, for a biharmonic hypersurface (M, g) of a Riemannian manifold (N, h) of non-positive Ricci curvature, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\int_M\vert H\vert^2 v_g<\infty}$$\end{document}, where H is the mean curvature of (M, g) in (N, h), then (M, g) is minimal in (N, h). Thus, for a counter example (M, g) in the case of hypersurfaces to the generalized Chen’s conjecture (cf. Sect. 1), it holds that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\int_M\vert H\vert^2 v_g=\infty}$$\end{document} .
引用
收藏
页码:125 / 131
页数:6
相关论文
共 50 条