Search of Fractal Space-Filling Curves with Minimal Dilation

被引:0
|
作者
Yuri Malykhin
Evgeny Shchepin
机构
[1] Steklov Mathematical Institute,
来源
关键词
Space-filling curves; Minimal dilation; 52C99;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce an algorithm for a search of extremal fractal curves in large curve classes. It heavily uses SAT-solvers—heuristic algorithms that find models for CNF boolean formulas. Our algorithm was implemented and applied to the search of fractal surjective curves γ:[0,1]→[0,1]d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma :[0,1]\rightarrow [0,1]^d$$\end{document} with minimal dilation supt1<t2‖γ(t2)-γ(t1)‖dt2-t1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sup _{t_1<t_2}\frac{\Vert \gamma (t_2)-\gamma (t_1)\Vert ^d}{t_2-t_1}. \end{aligned}$$\end{document}We report new results of that search in the case of Euclidean norm. We have found a new curve that we call “YE”, a self-similar (monofractal) plane curve of genus 5×5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5\times 5$$\end{document} with dilation 5+43/73=5.5890…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5+{43}/{73}=5.5890\ldots $$\end{document}  In dimension 3 we have found facet-gated bifractals (which we call “Spring”) of genus 2×2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2\times 2$$\end{document} with dilation <17\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<17$$\end{document}. In dimension 4 we obtained that there is a curve with dilation <62\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<62$$\end{document}. Some lower bounds on the dilation for wider classes of cubically decomposable curves are proven.
引用
收藏
页码:189 / 213
页数:24
相关论文
共 50 条
  • [41] The set of space-filling curves: Topological and algebraic structure
    Bernal-Gonzalez, L.
    Calderon-Moreno, M. C.
    Prado-Bassas, J. A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 467 : 57 - 74
  • [42] A FORTRAN PROCEDURE FOR DRAWING SOME SPACE-FILLING CURVES
    PALMER, JAB
    SOFTWARE-PRACTICE & EXPERIENCE, 1986, 16 (06): : 559 - 574
  • [43] Tensor product formulation for Hilbert space-filling curves
    Lin, SY
    Chen, CS
    Liu, L
    Huang, CH
    2003 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, PROCEEDINGS, 2003, : 99 - 106
  • [44] Fractality of refined triangular grids and space-filling curves
    A. Plaza
    J. P. Suárez
    M. A. Padrón
    Engineering with Computers, 2005, 20 : 323 - 332
  • [45] Securing multimedia videos using space-filling curves
    Debanjan Sadhya
    Santosh Singh Rathore
    Amitesh Singh Rajput
    Abhinav Anand
    Multimedia Tools and Applications, 2022, 81 : 38685 - 38704
  • [46] ALGORITHM FOR DISPLAYING A CLASS OF SPACE-FILLING CURVES.
    Griffiths, J.G.
    Software - Practice and Experience, 1986, 16 (05) : 403 - 411
  • [47] Tensor product formulation for Hilbert space-filling curves
    Lin, Shen-Yi
    Chen, Chih-Shen
    Liu, Li
    Huang, Chua-Huang
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2008, 24 (01) : 261 - 275
  • [48] Irregularity in high-dimensional space-filling curves
    Mokbel, Mohamed F.
    Aref, Walid G.
    DISTRIBUTED AND PARALLEL DATABASES, 2011, 29 (03) : 217 - 238
  • [49] Space-Filling Curves based on Residue Number System
    Platos, Jan
    Nowakova, Jana
    Kromer, Pavel
    Snasel, Vaclav
    ADVANCES IN INTELLIGENT NETWORKING AND COLLABORATIVE SYSTEMS, INCOS-2017, 2018, 8 : 53 - 61
  • [50] Irregularity in high-dimensional space-filling curves
    Mohamed F. Mokbel
    Walid G. Aref
    Distributed and Parallel Databases, 2011, 29 : 217 - 238