Search of Fractal Space-Filling Curves with Minimal Dilation

被引:0
|
作者
Yuri Malykhin
Evgeny Shchepin
机构
[1] Steklov Mathematical Institute,
来源
关键词
Space-filling curves; Minimal dilation; 52C99;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce an algorithm for a search of extremal fractal curves in large curve classes. It heavily uses SAT-solvers—heuristic algorithms that find models for CNF boolean formulas. Our algorithm was implemented and applied to the search of fractal surjective curves γ:[0,1]→[0,1]d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma :[0,1]\rightarrow [0,1]^d$$\end{document} with minimal dilation supt1<t2‖γ(t2)-γ(t1)‖dt2-t1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sup _{t_1<t_2}\frac{\Vert \gamma (t_2)-\gamma (t_1)\Vert ^d}{t_2-t_1}. \end{aligned}$$\end{document}We report new results of that search in the case of Euclidean norm. We have found a new curve that we call “YE”, a self-similar (monofractal) plane curve of genus 5×5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5\times 5$$\end{document} with dilation 5+43/73=5.5890…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5+{43}/{73}=5.5890\ldots $$\end{document}  In dimension 3 we have found facet-gated bifractals (which we call “Spring”) of genus 2×2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2\times 2$$\end{document} with dilation <17\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<17$$\end{document}. In dimension 4 we obtained that there is a curve with dilation <62\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<62$$\end{document}. Some lower bounds on the dilation for wider classes of cubically decomposable curves are proven.
引用
收藏
页码:189 / 213
页数:24
相关论文
共 50 条
  • [21] Space-Filling Curves and Phases of the Loewner Equation
    Lind, Joan
    Rohde, Steffen
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (06) : 2231 - 2249
  • [22] Regularity and modulus of continuity of space-filling curves
    Kauranen, Aapo
    Koskela, Pekka
    Zapadinskaya, Aleksandra
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 137 (01): : 73 - 100
  • [23] On the metric properties of discrete space-filling curves
    Gotsman, C
    Lindenbaum, M
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 1996, 5 (05) : 794 - 797
  • [24] Reptilings and space-filling curves for acute triangles
    Gottschau, Marinus
    Haverkort, Herman
    Matzke, Kilian
    DISCRETE & COMPUTATIONAL GEOMETRY, 2018, 60 (01) : 170 - 199
  • [25] On the quality of partitions based on space-filling curves
    Hungershöfer, J
    Wierum, JM
    COMPUTATIONAL SCIENCE-ICCS 2002, PT III, PROCEEDINGS, 2002, 2331 : 36 - 45
  • [26] Are Space-Filling Curves Efficient Small Antennas?
    Gonzalez-Arbesu, Jose M.
    Blanch, Sebastian
    Romeu, Jordi
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2003, 2 : 147 - 150
  • [27] Reptilings and space-filling curves for acute triangles
    Marinus Gottschau
    Herman Haverkort
    Kilian Matzke
    Discrete & Computational Geometry, 2018, 60 : 170 - 199
  • [28] Regularity and modulus of continuity of space-filling curves
    Aapo Kauranen
    Pekka Koskela
    Aleksandra Zapadinskaya
    Journal d'Analyse Mathématique, 2019, 137 : 73 - 100
  • [29] Optimality of Clustering Properties of Space-Filling Curves
    Xu, Pan
    Tirthapura, Srikanta
    ACM TRANSACTIONS ON DATABASE SYSTEMS, 2014, 39 (02):
  • [30] SPACE-FILLING CURVES AND INFINITE-GRAPHS
    SIROMONEY, R
    SUBRAMANIAN, KG
    LECTURE NOTES IN COMPUTER SCIENCE, 1983, 153 : 380 - 391