Tissue-specific enhancer-gene maps from multimodal single-cell data identify causal disease alleles

被引:5
|
作者
Sakaue, Saori [1 ,2 ,3 ,4 ]
Weinand, Kathryn [1 ,2 ,3 ,4 ,5 ]
Isaac, Shakson [1 ,2 ,3 ,4 ,5 ]
Dey, Kushal K. [4 ,6 ]
Jagadeesh, Karthik [4 ,6 ]
Kanai, Masahiro [4 ,7 ,8 ,9 ]
Watts, Gerald F. M. [10 ,11 ]
Zhu, Zhu [10 ,11 ]
Brenner, Michael B. [10 ,11 ]
McDavid, Andrew [12 ]
Donlin, Laura T. [13 ,14 ]
Wei, Kevin [10 ,11 ]
Price, Alkes L. [4 ,6 ,15 ]
Raychaudhuri, Soumya [1 ,2 ,3 ,4 ,5 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Ctr Data Sci, Boston, MA 02115 USA
[2] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Div Genet, Boston, MA 02115 USA
[3] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Div Rheumatol, Boston, MA 02115 USA
[4] Broad Inst MIT & Harvard, Program Med & Populat Genet, Cambridge, MA 02142 USA
[5] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[6] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[7] Massachusetts Gen Hosp, Analyt & Translat Genet Unit, Boston, MA USA
[8] Broad Inst MIT & Harvard, Stanley Ctr Psychiat Res, Cambridge, MA USA
[9] Massachusetts Gen Hosp, Ctr Computat & Integrat Biol, Boston, MA USA
[10] Brigham & Womens Hosp, Dept Med, Div Rheumatol Inflammat & Immun, 75 Francis St, Boston, MA 02115 USA
[11] Harvard Med Sch, Boston, MA USA
[12] Univ Rochester, Med Ctr, Dept Biostat & Computat Biol, Rochester, NY USA
[13] Hosp Special Surg, 535 E 70th St, New York, NY 10021 USA
[14] Weill Cornell Med, New York, NY USA
[15] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
基金
美国国家卫生研究院;
关键词
INFLAMMATORY-BOWEL-DISEASE; CHROMATIN; GENOME; DISCOVERY; VARIANTS; EXPRESSION; ASSOCIATION; ELEMENTS; LOCI; QTLS;
D O I
10.1038/s41588-024-01682-1
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Translating genome-wide association study (GWAS) loci into causal variants and genes requires accurate cell-type-specific enhancer-gene maps from disease-relevant tissues. Building enhancer-gene maps is essential but challenging with current experimental methods in primary human tissues. Here we developed a nonparametric statistical method, SCENT (single-cell enhancer target gene mapping), that models association between enhancer chromatin accessibility and gene expression in single-cell or nucleus multimodal RNA sequencing and ATAC sequencing data. We applied SCENT to 9 multimodal datasets including >120,000 single cells or nuclei and created 23 cell-type-specific enhancer-gene maps. These maps were highly enriched for causal variants in expression quantitative loci and GWAS for 1,143 diseases and traits. We identified likely causal genes for both common and rare diseases and linked somatic mutation hotspots to target genes. We demonstrate that application of SCENT to multimodal data from disease-relevant human tissue enables the scalable construction of accurate cell-type-specific enhancer-gene maps, essential for defining noncoding variant function.
引用
收藏
页码:615 / 626
页数:31
相关论文
共 50 条
  • [41] Putative cell type discovery from single-cell gene expression data
    Zhichao Miao
    Pablo Moreno
    Ni Huang
    Irene Papatheodorou
    Alvis Brazma
    Sarah A. Teichmann
    Nature Methods, 2020, 17 : 621 - 628
  • [42] Causal protein-signaling networks derived from multiparameter single-cell data
    Sachs, K
    Perez, O
    Pe'er, D
    Lauffenburger, DA
    Nolan, GP
    SCIENCE, 2005, 308 (5721) : 523 - 529
  • [43] Tissue-specific cell sorting from Drosophila embryos Application to gene expression analysis
    Salmand, Pierre-Adrien
    Iche-Torres, Magali
    Perrin, Laurent
    FLY, 2011, 5 (03) : 261 - 265
  • [44] Supervised discovery of interpretable gene programs from single-cell data
    Kunes, Russell Z.
    Walle, Thomas
    Land, Max
    Nawy, Tal
    Pe'er, Dana
    NATURE BIOTECHNOLOGY, 2024, 42 (07) : 1084 - 1095
  • [45] Mapping gene regulatory networks from single-cell omics data
    Fiers, Mark W. E. J.
    Minnoye, Liesbeth
    Aibar, Sara
    Gonzalez-Blas, Carmen Bravo
    Atak, Zeynep Kalender
    Aerts, Stein
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2018, 17 (04) : 246 - 254
  • [46] Inferring better gene regulation networks from single-cell data
    Stumpf, Michael P. H.
    CURRENT OPINION IN SYSTEMS BIOLOGY, 2021, 27
  • [47] CHARACTERIZATION OF A SINGLE STRONG TISSUE-SPECIFIC ENHANCER DOWNSTREAM FROM THE 3 HUMAN GENES ENCODING PLACENTAL-LACTOGEN
    JACQUEMIN, P
    OURY, C
    PEERS, B
    MORIN, A
    BELAYEW, A
    MARTIAL, JA
    MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (01) : 93 - 103
  • [48] Identification of cell-type-specific genes in multimodal single-cell data using deep neural network algorithm
    Qian, Weiye
    Yang, Zhiyuan
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 166
  • [49] Synthesising Executable Gene Regulatory Networks from Single-Cell Gene Expression Data
    Fisher, Jasmin
    Koeksal, Ali Sinan
    Piterman, Nir
    Woodhouse, Steven
    COMPUTER AIDED VERIFICATION, PT I, 2015, 9206 : 544 - 560
  • [50] BGP: identifying gene-specific branching dynamics from single-cell data with a branching Gaussian process
    Alexis Boukouvalas
    James Hensman
    Magnus Rattray
    Genome Biology, 19