BGP: identifying gene-specific branching dynamics from single-cell data with a branching Gaussian process

被引:0
|
作者
Alexis Boukouvalas
James Hensman
Magnus Rattray
机构
[1] University of Manchester,Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health
[2] Prowler.io,undefined
来源
关键词
Single cell RNA-seq; Gaussian process; Branching dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
High-throughput single-cell gene expression experiments can be used to uncover branching dynamics in cell populations undergoing differentiation through pseudotime methods. We develop the branching Gaussian process (BGP), a non-parametric model that is able to identify branching dynamics for individual genes and provide an estimate of branching times for each gene with an associated credible region. We demonstrate the effectiveness of our method on simulated data, a single-cell RNA-seq haematopoiesis study and mouse embryonic stem cells generated using droplet barcoding. The method is robust to high levels of technical variation and dropout, which are common in single-cell data.
引用
收藏
相关论文
共 50 条
  • [1] BGP: identifying gene-specific branching dynamics from single-cell data with a branching Gaussian process
    Boukouvalas, Alexis
    Hensman, James
    Rattray, Magnus
    GENOME BIOLOGY, 2018, 19
  • [2] Gene-Specific Transcriptional Mechanisms at the Histone Gene Cluster Revealed by Single-Cell Imaging
    Guglielmi, Benjamin
    La Rochelle, Natalie
    Tjian, Robert
    MOLECULAR CELL, 2013, 51 (04) : 480 - 492
  • [3] scCDC: a computational method for gene-specific contamination detection and correction in single-cell and single-nucleus RNA-seq data
    Wang, Weijian
    Cen, Yihui
    Lu, Zezhen
    Xu, Yueqing
    Sun, Tianyi
    Xiao, Ying
    Liu, Wanlu
    Li, Jingyi Jessica
    Wang, Chaochen
    GENOME BIOLOGY, 2024, 25 (01):
  • [4] TASIC: determining branching models from time series single cell data
    Rashid, Sabrina
    Kotton, Darrell N.
    Bar-Joseph, Ziv
    BIOINFORMATICS, 2017, 33 (16) : 2504 - 2512
  • [5] Model-based branching point detection in single-cell data by K-branches clustering
    Chlis, Nikolaos K.
    Wolf, F. Alexander
    Theis, Fabian J.
    BIOINFORMATICS, 2017, 33 (20) : 3211 - 3219
  • [6] Identifying progressive gene network perturbation from single-cell RNA-seq data
    Mukherjee, Sumit
    Carignano, Alberto
    Seelig, Georg
    Lee, Su-In
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 5034 - 5040
  • [7] High-throughput detection of miRNAs and gene-specific mRNA at the single-cell level by flow cytometry
    Porichis, Filippos
    Hart, Meghan G.
    Griesbeck, Morgane
    Everett, Holly L.
    Hassan, Muska
    Baxter, Amy E.
    Lindqvist, Madelene
    Miller, Sara M.
    Soghoian, Damien Z.
    Kavanagh, Daniel G.
    Reynolds, Susan
    Norris, Brett
    Mordecai, Scott K.
    Quan Nguyen
    Lai, Chunfai
    Kaufmann, Daniel E.
    NATURE COMMUNICATIONS, 2014, 5
  • [8] High-throughput detection of miRNAs and gene-specific mRNA at the single-cell level by flow cytometry
    Filippos Porichis
    Meghan G. Hart
    Morgane Griesbeck
    Holly L. Everett
    Muska Hassan
    Amy E. Baxter
    Madelene Lindqvist
    Sara M. Miller
    Damien Z. Soghoian
    Daniel G. Kavanagh
    Susan Reynolds
    Brett Norris
    Scott K. Mordecai
    Quan Nguyen
    Chunfai Lai
    Daniel E. Kaufmann
    Nature Communications, 5
  • [9] ADTGP: correcting single-cell antibody sequencing data using Gaussian process regression
    Liu, Alex C. H.
    Chan, Steven M.
    BIOINFORMATICS, 2024, 40 (11)
  • [10] scHLAcount: allele-specific HLA expression from single-cell gene expression data
    Darby, Charlotte A.
    Stubbington, Michael J. T.
    Marks, Patrick J.
    Barrio, Alvaro Martinez
    Fiddes, Ian T.
    BIOINFORMATICS, 2020, 36 (12) : 3905 - 3906