Semicartesian surfaces and the relaxed area of maps from the plane to the plane with a line discontinuity

被引:0
|
作者
Giovanni Bellettini
Maurizio Paolini
Lucia Tealdi
机构
[1] Università di Roma Tor Vergata,Dipartimento di Matematica
[2] INFN Laboratori Nazionali di Frascati,Dipartimento di Matematica
[3] Università Cattolica “Sacro Cuore”,undefined
[4] SISSA,undefined
关键词
Relaxed area functional; Area of graphs; Semicartesian surfaces; 49J45; 49Q15; 49Q20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we estimate the area of the graph of a map u:Ω⊂R2→R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{u}}: \varOmega \subset \mathbb {R}^2\rightarrow \mathbb {R}^2$$\end{document} discontinuous on a segment Ju\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{\mathbf{u}}$$\end{document}, with Ju\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{\mathbf{u}}$$\end{document} either compactly contained in the bounded open set Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, or starting and ending on ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}. We characterize A¯∞(u,Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathcal {A}}}^\infty ({\mathbf{u}},\varOmega )$$\end{document}, the relaxed area functional in a sort of uniform convergence, in terms of the infimum of the area of those surfaces in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document} spanning the graphs of the traces of u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{u}}$$\end{document} on the two sides of Ju\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{\mathbf{u}}$$\end{document} and having what we have called a semicartesian structure. We exhibit examples showing that A¯(u,Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathcal {A}}}({\mathbf{u}},\varOmega )$$\end{document}, the relaxed area in L1(Ω;R2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1(\varOmega ; \mathbb {R}^2)$$\end{document}, may depend on the values of u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{u}}$$\end{document} far from Ju\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{\mathbf{u}}$$\end{document} and also on the relative position of Ju\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{\mathbf{u}}$$\end{document} with respect to ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \varOmega $$\end{document}. These examples confirm the highly non-local behavior of A¯(u,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathcal {A}}}({\mathbf{u}},\cdot )$$\end{document} and justify the interest in the study of A¯∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathcal {A}}}^\infty $$\end{document}. Finally we prove that A¯(u,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathcal {A}}}({\mathbf{u}},\cdot )$$\end{document} is not subadditive for a rather large class of discontinuous maps u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{u}}$$\end{document}.
引用
收藏
页码:2131 / 2170
页数:39
相关论文
共 50 条
  • [41] ON SPECIAL GENERIC MAPS FROM A CLOSED MANIFOLD INTO THE PLANE
    PORTO, P
    FURUYA, YKS
    TOPOLOGY AND ITS APPLICATIONS, 1990, 35 (01) : 41 - 52
  • [42] A critical review of discontinuity plane extraction from 3D point cloud data of rock mass surfaces
    Daghigh, Hamid
    Tannant, Dwayne D.
    Daghigh, Vahid
    Lichti, Derek D.
    Lindenbergh, Roderik
    Computers and Geosciences, 2022, 169
  • [43] A critical review of discontinuity plane extraction from 3D point cloud data of rock mass surfaces
    Daghigh, Hamid
    Tannant, Dwayne D.
    Daghigh, Vahid
    Lichti, Derek D.
    Lindenbergh, Roderik
    COMPUTERS & GEOSCIENCES, 2022, 169
  • [44] UNIVERSAL BEHAVIOR IN AREA PRESERVING-MAPS OF THE PLANE AS A PERTURBATION PARAMETER IS VARIED
    GREENE, JM
    MACKAY, RS
    VIVALDI, F
    FEIGENBAUM, M
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 987 - 987
  • [45] Distance from Conic to Point, Plane or Line
    Zsombor-Murray, Paul
    MECHANISMS, TRANSMISSIONS AND APPLICATIONS, 2015, 31 : 79 - 88
  • [46] RECOMBINATION LINE EMISSION FROM GALACTIC PLANE
    MEBOLD, U
    ALTENHOFF, WJ
    CHURCHWELL, E
    WALMSLEY, CM
    ASTRONOMY & ASTROPHYSICS, 1976, 53 (02) : 175 - 177
  • [47] THE TRANSVERSE RESONANCE TECHNIQUE FOR ANALYSIS OF IRREGULAR DISTRIBUTED SLOT DISCONTINUITY IN MICROSTRIP LINE GROUND PLANE
    Krizhanovski, V. G.
    Rassokhina, Yu V.
    2012 INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY (MMET), 2012, : 113 - 116
  • [48] CONSTRAINTS ON MOVING STRONG DISCONTINUITY SURFACES IN DYNAMIC PLANE-STRESS OR PLANE-STRAIN DEFORMATIONS OF STABLE ELASTIC-IDEALLY PLASTIC MATERIALS
    SHEN, Y
    DRUGAN, WJ
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1990, 57 (03): : 569 - 576
  • [49] PLANE-WAVE SCATTERING FROM RANDOM SURFACES
    SCHLUP, WA
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1987, 67 (05): : T446 - T447
  • [50] DISTANCE OF THE IMAGE PLANE FROM METAL-SURFACES
    SMITH, NV
    CHEN, CT
    WEINERT, M
    PHYSICAL REVIEW B, 1989, 40 (11): : 7565 - 7573