Semicartesian surfaces and the relaxed area of maps from the plane to the plane with a line discontinuity

被引:0
|
作者
Giovanni Bellettini
Maurizio Paolini
Lucia Tealdi
机构
[1] Università di Roma Tor Vergata,Dipartimento di Matematica
[2] INFN Laboratori Nazionali di Frascati,Dipartimento di Matematica
[3] Università Cattolica “Sacro Cuore”,undefined
[4] SISSA,undefined
关键词
Relaxed area functional; Area of graphs; Semicartesian surfaces; 49J45; 49Q15; 49Q20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we estimate the area of the graph of a map u:Ω⊂R2→R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{u}}: \varOmega \subset \mathbb {R}^2\rightarrow \mathbb {R}^2$$\end{document} discontinuous on a segment Ju\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{\mathbf{u}}$$\end{document}, with Ju\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{\mathbf{u}}$$\end{document} either compactly contained in the bounded open set Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, or starting and ending on ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}. We characterize A¯∞(u,Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathcal {A}}}^\infty ({\mathbf{u}},\varOmega )$$\end{document}, the relaxed area functional in a sort of uniform convergence, in terms of the infimum of the area of those surfaces in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document} spanning the graphs of the traces of u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{u}}$$\end{document} on the two sides of Ju\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{\mathbf{u}}$$\end{document} and having what we have called a semicartesian structure. We exhibit examples showing that A¯(u,Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathcal {A}}}({\mathbf{u}},\varOmega )$$\end{document}, the relaxed area in L1(Ω;R2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1(\varOmega ; \mathbb {R}^2)$$\end{document}, may depend on the values of u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{u}}$$\end{document} far from Ju\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{\mathbf{u}}$$\end{document} and also on the relative position of Ju\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{\mathbf{u}}$$\end{document} with respect to ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \varOmega $$\end{document}. These examples confirm the highly non-local behavior of A¯(u,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathcal {A}}}({\mathbf{u}},\cdot )$$\end{document} and justify the interest in the study of A¯∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathcal {A}}}^\infty $$\end{document}. Finally we prove that A¯(u,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathcal {A}}}({\mathbf{u}},\cdot )$$\end{document} is not subadditive for a rather large class of discontinuous maps u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{u}}$$\end{document}.
引用
收藏
页码:2131 / 2170
页数:39
相关论文
共 50 条
  • [1] Semicartesian surfaces and the relaxed area of maps from the plane to the plane with a line discontinuity
    Bellettini, Giovanni
    Paolini, Maurizio
    Tealdi, Lucia
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) : 2131 - 2170
  • [2] On the relaxed area of the graph of discontinuous maps from the plane to the plane taking three values with no symmetry assumptions
    Bellettini, Giovanni
    Elshorbagy, Alaa
    Paolini, Maurizio
    Scala, Riccardo
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (02) : 445 - 477
  • [3] On the relaxed area of the graph of discontinuous maps from the plane to the plane taking three values with no symmetry assumptions
    Giovanni Bellettini
    Alaa Elshorbagy
    Maurizio Paolini
    Riccardo Scala
    Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 : 445 - 477
  • [4] ON THE AREA OF THE GRAPH OF A PIECEWISE SMOOTH MAP FROM THE PLANE TO THE PLANE WITH A CURVE DISCONTINUITY
    Bellettini, Giovanni
    Paolini, Maurizio
    Tealdi, Lucia
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2016, 22 (01) : 29 - 63
  • [5] Stable maps of surfaces into the plane
    Kálmán, T
    TOPOLOGY AND ITS APPLICATIONS, 2000, 107 (03) : 307 - 316
  • [6] FAMILIES OF MAPS FROM THE PLANE TO THE PLANE
    RIEGER, JH
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1987, 36 : 351 - 369
  • [7] On the classification of simple maps from the plane to the plane
    Binyamin, Muhammad Ahsan
    Mahmood, Hasan
    Kanwal, Shamsa
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (10)
  • [8] WEIGHTED HOMOGENEOUS MAPS FROM THE PLANE TO THE PLANE
    GAFFNEY, T
    MOND, DMQ
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1991, 109 : 451 - 470
  • [9] Classifying quadratic maps from plane to plane
    Díaz, RD
    Masqué, JM
    Domínguez, AP
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 364 : 1 - 12
  • [10] Direct Shear Test of Granite Discontinuity Plane Surfaces
    Goh, T. L.
    Rafek, A. Ghani
    Ariffin, M. Hariri
    Yunus, N. Baizura
    SAINS MALAYSIANA, 2011, 40 (05): : 419 - 423