Unternehmensanwendungen werden traditionell in OLTP (Online Transactional Processing) und OLAP (Online Analytical Processing) unterteilt. Während sich viele Forschungsaktivitäten der letzten Jahre auf die Optimierung dieser Trennung fokussieren, haben – im Speziellen während des letztes Jahrzehnts – sich sowohl Datenbanken als auch Hardware weiterentwickelt. Einerseits gibt es Datenmanagementsysteme, die Daten spaltenorientiert organisieren und dabei ideal das Anforderungsprofil analytischer Anfragen abdecken. Andererseits steht Anwendungen heute wesentlich mehr Hauptspeicher zur Verfügung, der in Kombination mit der ebenfalls wesentlich gesteigerten Rechenleistung es erlaubt, komplette Datenbanken von Unternehmen komprimiert im Speicher vorzuhalten. Beide Entwicklungen ermöglichen die Bearbeitung komplexer analytischer Anfragen in Sekundenbruchteilen und ermöglichen so komplett neue Geschäftsprozesse und -applikationen. Folglich stellt sich die Frage, ob die künstlich eingeführte Trennung von OLTP und OLAP aufgehoben werden kann und sämtliche Anfragen auf einem vereinten Datenbestand arbeiten können. Dieser Artikel betrachtet hierfür die Charakteristiken der Datenverarbeitung in Unternehmensanwendungen und zeigt wie ausgesuchte Technologien die Datenverarbeitung optimieren können. Ein weiterer Trend ist die Verwendung von Cloud Computing und somit die Auslagerung des Rechenzentrums zur Kostenoptimierung. Damit einher gehen Anforderungen an das Datenmanagement hinsichtlich dynamischer Erweiterung und Skalierung um dem Konzept des Cloud Computings gerecht zu werden. Die Eigenschaften spaltenorientierter Hauptspeicherdatenbanken bieten hier Vorteile, auch in Bezug auf die effektivere Auslastung der zur Verfügung stehenden Hardwareressourcen.