Deligne categories and reduced Kronecker coefficients

被引:0
|
作者
Inna Entova Aizenbud
机构
[1] Massachusetts Institute of Technology,Department of Mathematics
来源
关键词
Representations of symmetric groups; Kronecker coefficients; Deligne categories;
D O I
暂无
中图分类号
学科分类号
摘要
The Kronecker coefficients are the structural constants for the tensor categories of representations of the symmetric groups, namely, given three partitions λ,μ,τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda }, \mu , \tau $$\end{document} of n, the multiplicity of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} in μ⊗τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \otimes \tau $$\end{document} is called the Kronecker coefficient gμ,τλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g^{{\lambda }}_{\mu , \tau }$$\end{document}. When the first part of each of the partitions is taken to be very large (the remaining parts being fixed), the values of the appropriate Kronecker coefficients stabilize; the stable value is called the reduced (or stable) Kronecker coefficient. These coefficients also generalize the Littlewood–Richardson coefficients and have been studied quite extensively. In this paper, we show that reduced Kronecker coefficients appear naturally as structure constants of Deligne categories Rep̲(St)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{Rep}(S_t)$$\end{document}. This allows us to interpret various properties of the reduced Kronecker coefficients as categorical properties of Deligne categories Rep̲(St)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{Rep}(S_t)$$\end{document} and derive new combinatorial identities.
引用
收藏
页码:345 / 362
页数:17
相关论文
共 50 条
  • [21] Tensor ideals, Deligne categories and invariant theory
    Kevin Coulembier
    Selecta Mathematica, 2018, 24 : 4659 - 4710
  • [22] Operadic categories and duoidal Deligne's conjecture
    Batanin, Michael
    Markl, Martin
    ADVANCES IN MATHEMATICS, 2015, 285 : 1630 - 1687
  • [23] Computation of dilated Kronecker coefficients
    Baldoni, V.
    Vergne, M.
    Walter, M.
    JOURNAL OF SYMBOLIC COMPUTATION, 2018, 84 : 113 - 146
  • [24] ON THE COMPLEXITY OF COMPUTING KRONECKER COEFFICIENTS
    Pak, Igor
    Panova, Greta
    COMPUTATIONAL COMPLEXITY, 2017, 26 (01) : 1 - 36
  • [25] On the complexity of computing Kronecker coefficients
    Igor Pak
    Greta Panova
    computational complexity, 2017, 26 : 1 - 36
  • [26] A NOTE ON CERTAIN KRONECKER COEFFICIENTS
    Manivel, L.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (01) : 1 - 7
  • [27] Vanishing symmetric Kronecker coefficients
    Ressayre, Nicolas
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2020, 61 (02): : 231 - 246
  • [28] Quantum Complexity of the Kronecker Coefficients
    Bravyi, Sergey
    Chowdhury, Anirban
    Gosset, David
    Havlicek, Vojtech
    Zhu, Guanyu
    PRX QUANTUM, 2024, 5 (01):
  • [29] Vanishing symmetric Kronecker coefficients
    Nicolas Ressayre
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2020, 61 : 231 - 246
  • [30] THE PARTITION ALGEBRA AND THE KRONECKER COEFFICIENTS
    Bowman, C.
    De Visscher, M.
    Orellana, R.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (05) : 3647 - 3667