Tensor ideals, Deligne categories and invariant theory

被引:0
|
作者
Kevin Coulembier
机构
[1] University of Sydney,School of Mathematics and Statistics
来源
Selecta Mathematica | 2018年 / 24卷
关键词
Monoidal (super)category; Tensor ideal; Thick tensor ideal; Deligne category; Algebraic (super)group; Second fundamental theorem of invariant theory; Tilting modules; Quantum groups; 18D10; 17B45; 17B10; 15A72;
D O I
暂无
中图分类号
学科分类号
摘要
We derive some tools for classifying tensor ideals in monoidal categories. We use these results to classify tensor ideals in Deligne’s universal categories Rep̲Oδ,Rep̲GLδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\underline{\mathrm{Rep}}} O_\delta ,{\underline{\mathrm{Rep}}} GL_\delta $$\end{document} and Rep̲P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\underline{\mathrm{Rep}}} P$$\end{document}. These results are then used to obtain new insight into the second fundamental theorem of invariant theory for the algebraic supergroups of types A, B, C, D, P. We also find new short proofs for the classification of tensor ideals in Rep̲St\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\underline{\mathrm{Rep}}} S_t$$\end{document} and in the category of tilting modules for SL2(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {SL}}_2(\Bbbk )$$\end{document} with char(k)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{char}(\Bbbk )>0$$\end{document} and for Uq(sl2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(\mathfrak {sl}_2)$$\end{document} with q a root of unity. In general, for a simple Lie algebra g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {g}$$\end{document} of type ADE, we show that the lattice of such tensor ideals for Uq(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(\mathfrak {g})$$\end{document} corresponds to the lattice of submodules in a parabolic Verma module for the corresponding affine Kac–Moody algebra.
引用
收藏
页码:4659 / 4710
页数:51
相关论文
共 50 条