Tensor ideals, Deligne categories and invariant theory

被引:15
|
作者
Coulembier, Kevin [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
来源
SELECTA MATHEMATICA-NEW SERIES | 2018年 / 24卷 / 05期
基金
澳大利亚研究理事会;
关键词
Monoidal (super)category; Tensor ideal; Thick tensor ideal; Deligne category; Algebraic (super)group; Second fundamental theorem of invariant theory; Tilting modules; Quantum groups; BRAUER ALGEBRA; HIGHEST WEIGHT; REPRESENTATIONS;
D O I
10.1007/s00029-018-0433-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive some tools for classifying tensor ideals in monoidal categories. We use these results to classify tensor ideals inDeligne's universal categories RepO(delta), RepGL(delta) and RepP. These results are then used to obtain newinsight into the second fundamental theorem of invariant theory for the algebraic supergroups of types A, B, C, D, P. We also find new short proofs for the classification of tensor ideals in RepSt and in the category of tilting modules for SL2(k) with char(k) > 0 and for U-q (sl2) with q a root of unity. In general, for a simple Lie algebra g of type ADE, we show that the lattice of such tensor ideals for Uq (g) corresponds to the lattice of submodules in a parabolic Verma module for the corresponding affine Kac-Moody algebra.
引用
收藏
页码:4659 / 4710
页数:52
相关论文
共 50 条