Deformations of three-dimensional metrics

被引:0
|
作者
Daniela Pugliese
Cosimo Stornaiolo
机构
[1] Silesian University in Opava,Faculty of Philosophy and Science, Institute of Physics
[2] Sez. di Napoli,INFN
来源
关键词
Space–time deformations; Scalar fields; Three-dimensional metrics; Conformal methods;
D O I
暂无
中图分类号
学科分类号
摘要
We examine three-dimensional metric deformations based on a tetrad transformation through the action the matrices of scalar field. We describe by this approach to deformation the results obtained by Coll et al. (Gen. Relativ. Gravit. 34:269, 2002), where it is stated that any three-dimensional metric was locally obtained as a deformation of a constant curvature metric parameterized by a 2-form. To this aim, we construct the corresponding deforming matrices and provide their classification according to the properties of the scalar σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} and of the vector s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {s}$$\end{document} used in Coll et al. (Gen Relativ Gravit 34:269, 2002) to deform the initial metric. The resulting causal structure of the deformed geometries is examined, too. Finally we apply our results to a spherically symmetric three geometry and to a space sector of Kerr metric.
引用
收藏
相关论文
共 50 条
  • [41] Landscape metrics for three-dimensional urban building pattern recognition
    Liu, Miao
    Hu, Yuan-Man
    Li, Chun-Lin
    APPLIED GEOGRAPHY, 2017, 87 : 66 - 72
  • [42] Three-dimensional homogeneous critical metrics for quadratic curvature functionals
    M. Brozos-Vázquez
    E. García-Río
    S. Caeiro-Oliveira
    Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 363 - 378
  • [43] Three-dimensional homogeneous Lorentzian metrics with prescribed Ricci tensor
    Calvarusoa, Giovanni
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (12)
  • [44] THREE-DIMENSIONAL DISCRETE CURVATURE FLOWS AND DISCRETE EINSTEIN METRICS
    Ge, Huabin
    Xu, Xu
    Zhang, Shijin
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 287 (01) : 49 - 70
  • [45] Three-dimensional Lorentz metrics and curvature homogeneity of order one
    Bueken, P
    Djoric, M
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2000, 18 (01) : 85 - 103
  • [46] Three-Dimensional Lorentz Metrics and Curvature Homogeneity of Order One
    Peter Bueken
    Mirjana Djorić
    Annals of Global Analysis and Geometry, 2000, 18 : 85 - 103
  • [47] Classification of generalized Einstein metrics on three-dimensional Lie groups
    Cortes, Vicente
    Krusche, David
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2023, 75 (06): : 2038 - 2095
  • [48] Measurements of Deformations in Three-Dimensional Complex Elements by Moire Method.
    Ullmann, K.
    1600, (21):
  • [49] Analysis of three-dimensional bending deformations and failure of wet and dry laminates
    Jain, D.
    Zhao, Y. Q.
    Batra, R. C.
    COMPOSITE STRUCTURES, 2020, 252
  • [50] Holographic image correlation method for measuring three-dimensional solid deformations
    Slepicka, JS
    Huang, K
    Cha, SS
    EXPERIMENTAL TECHNIQUES, 1998, 22 (06) : 35 - 38