Deformations of three-dimensional metrics

被引:0
|
作者
Daniela Pugliese
Cosimo Stornaiolo
机构
[1] Silesian University in Opava,Faculty of Philosophy and Science, Institute of Physics
[2] Sez. di Napoli,INFN
来源
关键词
Space–time deformations; Scalar fields; Three-dimensional metrics; Conformal methods;
D O I
暂无
中图分类号
学科分类号
摘要
We examine three-dimensional metric deformations based on a tetrad transformation through the action the matrices of scalar field. We describe by this approach to deformation the results obtained by Coll et al. (Gen. Relativ. Gravit. 34:269, 2002), where it is stated that any three-dimensional metric was locally obtained as a deformation of a constant curvature metric parameterized by a 2-form. To this aim, we construct the corresponding deforming matrices and provide their classification according to the properties of the scalar σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} and of the vector s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {s}$$\end{document} used in Coll et al. (Gen Relativ Gravit 34:269, 2002) to deform the initial metric. The resulting causal structure of the deformed geometries is examined, too. Finally we apply our results to a spherically symmetric three geometry and to a space sector of Kerr metric.
引用
收藏
相关论文
共 50 条