The fractional matching preclusion number of complete n-balanced k-partite graphs

被引:0
|
作者
Yu Luan
Mei Lu
Yi Zhang
机构
[1] Tsinghua University,Department of Mathematical Sciences
[2] Beijing University of Posts and Telecommunications,School of Sciences
来源
关键词
Fractional matching preclusion number; -balanced ; -partite graph; Fractional perfect matching;
D O I
暂无
中图分类号
学科分类号
摘要
The fractional matching preclusion number of a graph G, denoted by fmp(G), is the minimum number of edges whose deletion results in a graph with no fractional perfect matchings. Let Gk,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{k,n}$$\end{document} be the complete n-balanced k-partite graph, whose vertex set can be partitioned into k parts, each has n vertices and whose edge set contains all edges between two distinct parts. In this paper, we prove that if k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document} or 5 and n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1$$\end{document}, then fmp(Gk,n)=δ(Gk,n)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$fmp(G_{k,n})=\delta (G_{k,n})-1$$\end{document}; otherwise fmp(Gk,n)=δ(Gk,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$fmp(G_{k,n})=\delta (G_{k,n})$$\end{document}.
引用
收藏
页码:1323 / 1329
页数:6
相关论文
共 50 条
  • [31] THE MEDIAN PROBLEM ON k-PARTITE GRAPHS
    Pravas, Karuvachery
    Vijayakumar, Ambat
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (03) : 439 - 446
  • [32] On degree sets in k-partite graphs
    Naikoo, T. A.
    Samee, U.
    Pirzada, S.
    Rather, Bilal A.
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2020, 12 (02) : 251 - 259
  • [33] Strongly self-centered orientation of complete k-partite graphs
    Miao, Huifang
    Yang, Weihua
    DISCRETE APPLIED MATHEMATICS, 2014, 175 : 119 - 125
  • [34] The generating function of irreducible coverings by edges of complete k-partite graphs
    Domocos, V
    Buzeteanu, SN
    DISCRETE MATHEMATICS, 1995, 147 (1-3) : 287 - 292
  • [35] Fractional matching preclusion of graphs
    Yan Liu
    Weiwei Liu
    Journal of Combinatorial Optimization, 2017, 34 : 522 - 533
  • [36] Strong orientations of complete k-partite graphs achieving the strong diameter
    Miao, Huifang
    Lin, Guoping
    INFORMATION PROCESSING LETTERS, 2010, 110 (06) : 206 - 210
  • [37] Enumeration of Labeled and Unlabeled Hamiltonian Cycles in Complete k-Partite Graphs
    Krasko E.S.
    Labutin I.N.
    Omelchenko A.V.
    Journal of Mathematical Sciences, 2021, 255 (1) : 71 - 87
  • [38] Fractional matching preclusion of graphs
    Liu, Yan
    Liu, Weiwei
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (02) : 522 - 533
  • [39] Chorded Pancyclicity in k-Partite Graphs
    Ferrero, Daniela
    Lesniak, Linda
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1565 - 1580
  • [40] Label Propagation on K-partite Graphs
    Ding, Chris
    Li, Tao
    Wang, Dingding
    EIGHTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2009, : 273 - +