The fractional matching preclusion number of complete n-balanced k-partite graphs

被引:0
|
作者
Yu Luan
Mei Lu
Yi Zhang
机构
[1] Tsinghua University,Department of Mathematical Sciences
[2] Beijing University of Posts and Telecommunications,School of Sciences
来源
关键词
Fractional matching preclusion number; -balanced ; -partite graph; Fractional perfect matching;
D O I
暂无
中图分类号
学科分类号
摘要
The fractional matching preclusion number of a graph G, denoted by fmp(G), is the minimum number of edges whose deletion results in a graph with no fractional perfect matchings. Let Gk,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{k,n}$$\end{document} be the complete n-balanced k-partite graph, whose vertex set can be partitioned into k parts, each has n vertices and whose edge set contains all edges between two distinct parts. In this paper, we prove that if k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document} or 5 and n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1$$\end{document}, then fmp(Gk,n)=δ(Gk,n)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$fmp(G_{k,n})=\delta (G_{k,n})-1$$\end{document}; otherwise fmp(Gk,n)=δ(Gk,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$fmp(G_{k,n})=\delta (G_{k,n})$$\end{document}.
引用
收藏
页码:1323 / 1329
页数:6
相关论文
共 50 条
  • [21] Fractional matching preclusion number of graphs and the perfect matching polytope
    Ruizhi Lin
    Heping Zhang
    Journal of Combinatorial Optimization, 2020, 39 : 915 - 932
  • [22] The perfect matching and tight Hamilton cycle decomposition of complete n-balanced mk-partite k-uniform hypergraphs
    Jiang, Taijiang
    Sun, Qiang
    Zhang, Shunzhe
    Zhang, Chao
    DISCRETE MATHEMATICS, 2023, 346 (12)
  • [23] Anti-Ramsey Numbers in Complete k-Partite Graphs
    Ding, Jili
    Bian, Hong
    Yu, Haizheng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [24] Fractional matching preclusion number of graphs and the perfect matching polytope
    Lin, Ruizhi
    Zhang, Heping
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (03) : 915 - 932
  • [25] The inertia and energy of distance matrices of complete k-partite graphs
    Zhang, Xiaoling
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 450 : 108 - 120
  • [26] Strong Distances in Strong Oriented Complete k-Partite Graphs
    Miao, Huifang
    Guo, Xiaofeng
    ARS COMBINATORIA, 2011, 102 : 213 - 223
  • [27] The maximum outdegree power of complete k-partite oriented graphs
    Xu, Chentao
    You, Zhe
    Zhang, Liwen
    Zhou, Minghong
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 433
  • [28] On Finding and Enumerating Maximal and Maximum k-Partite Cliques in k-Partite Graphs
    Phillips, Charles A.
    Wang, Kai
    Baker, Erich J.
    Bubier, Jason A.
    Chesler, Elissa J.
    Langston, Michael A.
    ALGORITHMS, 2019, 12 (01)
  • [29] On degree conditions of semi-balanced k-partite Hamiltonian graphs
    Yokomura, Kuniharu
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (08)
  • [30] Hamiltonian cycles in k-partite graphs
    DeBiasio, Louis
    Krueger, Robert A.
    Pritikin, Dan
    Thompson, Eli
    JOURNAL OF GRAPH THEORY, 2020, 94 (01) : 92 - 112