The fractional matching preclusion number of complete n-balanced k-partite graphs

被引:0
|
作者
Yu Luan
Mei Lu
Yi Zhang
机构
[1] Tsinghua University,Department of Mathematical Sciences
[2] Beijing University of Posts and Telecommunications,School of Sciences
来源
关键词
Fractional matching preclusion number; -balanced ; -partite graph; Fractional perfect matching;
D O I
暂无
中图分类号
学科分类号
摘要
The fractional matching preclusion number of a graph G, denoted by fmp(G), is the minimum number of edges whose deletion results in a graph with no fractional perfect matchings. Let Gk,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{k,n}$$\end{document} be the complete n-balanced k-partite graph, whose vertex set can be partitioned into k parts, each has n vertices and whose edge set contains all edges between two distinct parts. In this paper, we prove that if k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document} or 5 and n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1$$\end{document}, then fmp(Gk,n)=δ(Gk,n)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$fmp(G_{k,n})=\delta (G_{k,n})-1$$\end{document}; otherwise fmp(Gk,n)=δ(Gk,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$fmp(G_{k,n})=\delta (G_{k,n})$$\end{document}.
引用
收藏
页码:1323 / 1329
页数:6
相关论文
共 50 条
  • [1] The fractional matching preclusion number of complete n-balanced k-partite graphs
    Luan, Yu
    Lu, Mei
    Zhang, Yi
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (02) : 1323 - 1329
  • [2] The fractional (strong) matching preclusion number of complete k-partite graph
    Luan, Yu
    Lu, Mei
    Zhang, Yi
    THEORETICAL COMPUTER SCIENCE, 2021, 893 : 176 - 182
  • [3] HAMILTONICITY IN BALANCED K-PARTITE GRAPHS
    CHEN, GT
    FAUDREE, RJ
    GOULD, RJ
    JACOBSON, MS
    LESNIAK, L
    GRAPHS AND COMBINATORICS, 1995, 11 (03) : 221 - 231
  • [4] On Hamiltonian cycles in balanced k-partite graphs
    DeBiasio, Louis
    Spanier, Nicholas
    DISCRETE MATHEMATICS, 2021, 344 (11)
  • [5] Fractional Matching Preclusion for (n, k)-Star Graphs
    Ma, Tianlong
    Mao, Yaping
    Cheng, Eddie
    Wang, Jinling
    PARALLEL PROCESSING LETTERS, 2018, 28 (04)
  • [6] GEODETIC ORIENTATIONS OF COMPLETE K-PARTITE GRAPHS
    GASSMAN, LD
    ENTRINGER, RC
    GILBERT, JR
    LONZ, SA
    VUCENIC, W
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 19 (03) : 214 - 238
  • [7] ON VERTEX STABILITY OF COMPLETE k-PARTITE GRAPHS
    Nikodem, Mateusz
    OPUSCULA MATHEMATICA, 2015, 35 (06) : 907 - 914
  • [8] Fractional matching preclusion number of graphs?
    Zou, Jinyu
    Mao, Yaping
    Wang, Zhao
    Cheng, Eddie
    DISCRETE APPLIED MATHEMATICS, 2022, 311 : 142 - 153
  • [9] Spanners of complete k-partite geometric graphs
    Bose, Prosenjit
    Carmi, Paz
    Couture, Mathieu
    Maheshwari, Anil
    Morin, Pat
    Smid, Michiel
    LATIN 2008: THEORETICAL INFORMATICS, 2008, 4957 : 170 - 181
  • [10] INVULNERABILITY OF REGULAR COMPLETE K-PARTITE GRAPHS
    BOESCH, FT
    FELZER, A
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1971, 20 (02) : 176 - &