Interpolatory pointwise estimates for convex polynomial approximation

被引:0
|
作者
K. A. Kopotun
D. Leviatan
I. L. Petrova
I. A. Shevchuk
机构
[1] University of Manitoba,Department of Mathematics
[2] Tel Aviv University,Raymond and Beverly Sackler School of Mathematical Sciences
[3] Taras Shevchenko National University of Kyiv,Faculty of Mechanics and Mathematics
来源
Acta Mathematica Hungarica | 2021年 / 163卷
关键词
convex approximation by polynomials; degree of approximation; Jackson-type interpolatory estimate; 41A29; 41A10; 41A25;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with approximation of smooth convex functions f on an interval by convex algebraic polynomials which interpolate f and its derivatives at the endpoints of this interval. We call such estimates “interpolatory”. One important corollary of our main theorem is the following result on approximation of f∈Δ(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in \Delta ^{(2)}$$\end{document}, the set of convex functions, from Wr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^r$$\end{document}, the space of functions on [-1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[-1, 1]$$\end{document} for which f(r-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{(r-1)}$$\end{document} is absolutely continuous and ‖f(r)‖∞:=esssupx∈[-1,1]|f(r)(x)|<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert f^{(r)}\Vert_\infty := \mathrm{ess~sup}_{x\in [-1,1]}|f^{(r)}(x)| < \infty $$\end{document}:
引用
收藏
页码:85 / 117
页数:32
相关论文
共 50 条
  • [41] The Convex Sets in Banach Spaces and Polynomial Approximation
    Elshreif, Ashraf S.
    Ibrahim, Habeeb
    Dafaalla, Mohammed E.
    Osman, Osman Abdalla Adam
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2024, 22
  • [42] Convex polynomial approximation in the uniform norm: Conclusion
    Kopotun, KA
    Leviatan, D
    Shevchuk, IA
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2005, 57 (06): : 1224 - 1248
  • [43] On exact estimates for the pointwise approximation of the classes WrHω by algebraic polynomials
    Motornyi V.P.
    Ukrainian Mathematical Journal, 2001, 53 (6) : 916 - 937
  • [44] POINTWISE EXPONENTIALLY WEIGHTED ESTIMATES FOR APPROXIMATION ON THE HALF-LINE
    BALAZS, K
    KILGORE, T
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1992, 13 (3-4) : 223 - 232
  • [45] POLYNOMIAL ESTIMATES, EXPONENTIAL CURVES AND DIOPHANTINE APPROXIMATION
    Coman, Dan
    Poletsky, Evgeny A.
    MATHEMATICAL RESEARCH LETTERS, 2010, 17 (06) : 1125 - 1136
  • [46] Uniform estimates for polynomial approximation in domains with corners
    Abdullayev, FG
    Shevchuk, IA
    JOURNAL OF APPROXIMATION THEORY, 2005, 137 (02) : 143 - 165
  • [47] APPROXIMATION WITH INTERPOLATORY CONSTRAINTS
    HILL, D
    PASSOW, E
    RAYMON, L
    ILLINOIS JOURNAL OF MATHEMATICS, 1976, 20 (01) : 65 - 71
  • [48] Polynomial interpolation, an L-function, and pointwise approximation of continuous functions
    Ganzburg, Michael I.
    JOURNAL OF APPROXIMATION THEORY, 2008, 153 (01) : 1 - 18
  • [49] Approximation with interpolatory constraints
    Mhaskar, HN
    Narcowich, FJ
    Sivakumar, N
    Ward, JD
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (05) : 1355 - 1364
  • [50] SOME ESTIMATES FOR THE ZEROS OF A COMPLEX POLYNOMIAL IN THE CONVEX HULL
    Stoyanov, Todor Stoyanov
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '12), 2012, 1497 : 342 - 347