Interpolatory pointwise estimates for convex polynomial approximation

被引:0
|
作者
K. A. Kopotun
D. Leviatan
I. L. Petrova
I. A. Shevchuk
机构
[1] University of Manitoba,Department of Mathematics
[2] Tel Aviv University,Raymond and Beverly Sackler School of Mathematical Sciences
[3] Taras Shevchenko National University of Kyiv,Faculty of Mechanics and Mathematics
来源
Acta Mathematica Hungarica | 2021年 / 163卷
关键词
convex approximation by polynomials; degree of approximation; Jackson-type interpolatory estimate; 41A29; 41A10; 41A25;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with approximation of smooth convex functions f on an interval by convex algebraic polynomials which interpolate f and its derivatives at the endpoints of this interval. We call such estimates “interpolatory”. One important corollary of our main theorem is the following result on approximation of f∈Δ(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in \Delta ^{(2)}$$\end{document}, the set of convex functions, from Wr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^r$$\end{document}, the space of functions on [-1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[-1, 1]$$\end{document} for which f(r-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{(r-1)}$$\end{document} is absolutely continuous and ‖f(r)‖∞:=esssupx∈[-1,1]|f(r)(x)|<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert f^{(r)}\Vert_\infty := \mathrm{ess~sup}_{x\in [-1,1]}|f^{(r)}(x)| < \infty $$\end{document}:
引用
收藏
页码:85 / 117
页数:32
相关论文
共 50 条