Interpolatory pointwise estimates for convex polynomial approximation

被引:0
|
作者
K. A. Kopotun
D. Leviatan
I. L. Petrova
I. A. Shevchuk
机构
[1] University of Manitoba,Department of Mathematics
[2] Tel Aviv University,Raymond and Beverly Sackler School of Mathematical Sciences
[3] Taras Shevchenko National University of Kyiv,Faculty of Mechanics and Mathematics
来源
Acta Mathematica Hungarica | 2021年 / 163卷
关键词
convex approximation by polynomials; degree of approximation; Jackson-type interpolatory estimate; 41A29; 41A10; 41A25;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with approximation of smooth convex functions f on an interval by convex algebraic polynomials which interpolate f and its derivatives at the endpoints of this interval. We call such estimates “interpolatory”. One important corollary of our main theorem is the following result on approximation of f∈Δ(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in \Delta ^{(2)}$$\end{document}, the set of convex functions, from Wr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^r$$\end{document}, the space of functions on [-1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[-1, 1]$$\end{document} for which f(r-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{(r-1)}$$\end{document} is absolutely continuous and ‖f(r)‖∞:=esssupx∈[-1,1]|f(r)(x)|<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert f^{(r)}\Vert_\infty := \mathrm{ess~sup}_{x\in [-1,1]}|f^{(r)}(x)| < \infty $$\end{document}:
引用
收藏
页码:85 / 117
页数:32
相关论文
共 50 条
  • [1] Interpolatory pointwise estimates for convex polynomial approximation
    Kopotun, K. A.
    Leviatan, D.
    Petrova, I. L.
    Shevchuk, I. A.
    ACTA MATHEMATICA HUNGARICA, 2021, 163 (01) : 85 - 117
  • [2] Interpolatory Pointwise Estimates for Polynomial Approximation
    H. H. Gonska
    D. Leviatan
    I. A. Shevchuk
    H. -J. Wenz
    Constructive Approximation, 2000, 16 : 603 - 629
  • [3] Interpolatory pointwise estimates for polynomial approximation
    Gonska, HH
    Leviatan, D
    Shevchuk, IA
    Wenz, HJ
    CONSTRUCTIVE APPROXIMATION, 2000, 16 (04) : 603 - 629
  • [4] Interpolatory pointwise estimates for monotone polynomial approximation
    Kopotun, K. A.
    Leviatan, D.
    Shevchuk, I. A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 459 (02) : 1260 - 1295
  • [5] POINTWISE ESTIMATES FOR CONVEX POLYNOMIAL APPROXIMATION
    余祥明
    Approximation Theory and Its Applications, 1985, (04) : 65 - 74
  • [6] Interpolatory estimates for convex piecewise polynomial approximation
    Kopotun, K. A.
    Leviatan, D.
    Shevchuk, I. A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 474 (01) : 467 - 479
  • [7] POINTWISE ESTIMATES FOR CONVEX POLYNOMIAL-APPROXIMATION
    LEVIATAN, D
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 98 (03) : 471 - 474
  • [9] Interpolatory estimates in monotone piecewise polynomial approximation
    Leviatan, D.
    Petrova, I. L.
    JOURNAL OF APPROXIMATION THEORY, 2017, 223 : 1 - 8
  • [10] Interpolatory estimates in monotone piecewise polynomial approximation
    Leviatan, D.
    Petrova, I. L.
    JOURNAL OF APPROXIMATION THEORY, 2019, 238 : 103 - 110